Andre Dekker (A.L.A.J.)
Recent publications
-
Ye, G., Wei, Z., Han, C., Wu, G., Wong, C., Liang, Y., Chen, X., Zhou, W., Gao, J., Liang, C., Liao, Y., Hendriks, L. E. L., Wee, L., De Ruysscher, D., Dekker, A., Zhou, H., Qi, Y., Liu, Z., & Shi, Z. (2025). AI-derived longitudinal and multi-dimensional CT classifier for non-small cell lung cancer to optimize neoadjuvant chemoimmunotherapy decision: a multicentre retrospective study. EClinicalMedicine, 89, Article 103551. https://doi.org/10.1016/j.eclinm.2025.103551More information about this publication
-
Cao, Q., Jiang, Z., Wang, Z., Wee, L., Dekker, A., Zhang, Z., & Zhu, J. (2025). Minimum sample size calculation for radiomics-based binary outcome prediction models: Theoretical framework and practical example. Radiotherapy and Oncology, 212, Article 111134. https://doi.org/10.1016/j.radonc.2025.111134More information about this publication
-
Kaidar-Person, O., Pfob, A., Valentini, V., Aznar, M., Dekker, A., Meattini, I., de Boniface, J., Krug, D., Cardoso, M. J., Curigliano, G., Dubsky, P., & Poortmans, P. (2025). Corrigendum to “Artificial intelligence in breast cancer radiotherapy: Insights from the Toolbox Consortium Delphi study” [The Breast, Volume 83 (2025) 104537] . Breast, 83, Article 104557. https://doi.org/10.1016/j.breast.2025.104557More information about this publication
-
Gu, Q., Chen, S., Dekker, A., Wee, L., Kalendralis, P., Yan, M., Wang, J., Yuan, J., & Jiang, Y. (2025). Variational autoencoder-based deep learning and radiomics for predicting pathologic complete response to neoadjuvant chemoimmunotherapy in locally advanced esophageal squamous cell carcinoma. British Journal of Radiology. Advance online publication. https://doi.org/10.1093/bjr/tqaf239More information about this publication
-
van Daalen, F., Jacquemin, M., van Soest, J., Stahl, N., Townend, D., Dekker, A., & Bermejo, I. (2025). A critique of current approaches to privacy in machine learning. Ethics and Information Technology, 27(3), Article 32. https://doi.org/10.1007/s10676-025-09843-4More information about this publication
-
Li, W., Pan, X., Zhang, Z., Wu, G., Ye, G., Wee, L., Dekker, A., Han, C., Shi, L., Liu, Z., Liu, Z., & Shi, Z. (2025). Data-efficient federated semi-supervised learning framework via pseudo supervision refinement strategy for lung tumor segmentation. Biomedical Signal Processing and Control, 107, Article 107793. https://doi.org/10.1016/j.bspc.2025.107793More information about this publication
-
van Daalen, F., Brecheisen, R., Wee, L., Dekker, A., & Bermejo, I. (2025). Multinomial Classification Certainty: a new uncertainty metric for multinomial outcome prediction. Progress in Artificial Intelligence. Advance online publication. https://doi.org/10.1007/s13748-025-00404-wMore information about this publication
-
van Mierlo, R., Scheenstra, B., Verbeek, J., Bruninx, A., Kalendralis, P., Bermejo, I., Dekker, A., van 't Hof, A., Spreeuwenberg, M., & Hochstenbach, L. (2025). Optimizing Cardiovascular Risk Management in Primary Care Using a Personalized eCoach Solution Enhanced by an Artificial Intelligence-Driven Clinical Prediction Model: Protocol from the Coronary Artery Disease Risk Estimation and Early Detection Consortium. JMIR Research Protocols, 14, Article e66068. https://doi.org/10.2196/66068More information about this publication
-
Mateus, P., Savino, M., Capocchiano, N. D., Berbee, M., Gambacorta, M. A., Chiloiro, G., Willems, Y. C. P., Damiani, A., Osong, B., Dekker, A., & Bermejo, I. (2025). Predicting near-complete pathological response to (chemo)radiotherapy in patients with rectal cancer: A federated learning study. Medical Physics, 52(8), Article e18034. https://doi.org/10.1002/mp.18034More information about this publication
-
Geraeds, C. B. G., Bruninx, A., Dekker, A. L. A. J., Barandiaran Aizpurua, A., Bermejo, I., & Brunner-La Rocca, H.-P. (2025). Exploring safety of down-titrating diuretics in heart failure management. European journal of heart failure, 27(8), 1393-1399. https://doi.org/10.1002/ejhf.3714More information about this publication