Hecq, A., Ricardo, I., & Wilms, I. (2025). Detecting cointegrating relations in non-stationary matrix-valued time series. Economics Letters, 248, Article 112205. https://doi.org/10.1016/j.econlet.2025.112205
Hu, Y. J., Rombouts, J., & Wilms, I. (2025). Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms. Information Systems Research, 36(1), 552-571. https://doi.org/10.1287/isre.2023.0130
Nesrstová, V., Wilms, I., Hron, K., & Filzmoser, P. (2025). Identifying Important Pairwise Logratios in Compositional Data with Sparse Principal Component Analysis. Mathematical Geosciences, 57(2), 333-358. https://doi.org/10.1007/s11004-024-10159-0
Rombouts, J., Ternes, M., & Wilms, I. (2025). Cross-temporal forecast reconciliation at digital platforms with machine learning. International Journal of Forecasting, 41(1), 321-344. https://doi.org/10.1016/j.ijforecast.2024.05.008
Adamek, R., Smeekes, S., & Wilms, I. (2024). Local projection inference in high dimensions. Econometrics Journal, 27(3), 323-342. https://doi.org/10.1093/ectj/utae012
Touw, D. J. W., Alfons, A., Groenen, P. J. F., & Wilms, I. (2024). Clusterpath Gaussian graphical modeling. Cornell University - arXiv. arXiv.org No. 2407.00644 https://doi.org/10.48550/arXiv.2407.00644
Rombouts, J., Ternes, M., & Wilms, I. (2024). Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning. Cornell University - arXiv. arXiv.org No. 2402.09033 https://doi.org/10.48550/arXiv.2402.09033
Hecq, A., Ricardo, I., & Wilms, I. (2024). Detecting Cointegrating Relations in Non-stationary Matrix-Valued Time Series. Cornell University - arXiv. arXiv.org No. 2411.05601 https://doi.org/10.48550/arXiv.2411.05601