
Zoekresultaten
- June_2024.pdf (103.29 kB, PDF)… The Chair opens the meeting. 2a. Approval of the text of the public part of the report of the 191st Meeting dated 21 May 2024 24.0803o – dated 03-06-24 – minutes with annex Refer to the approved version of the minutes with reference 24.0803/Io. 2b. Comments on the public part of the report There are no comments. 3. Announcements by the Dean The Dean informs the Council that on September 18, an artwork will be unveiled on a wall of the Co Greepzaal, Uns60. This artwork will feature images of all past Deans. The Dean reports on a decision by the … informed of this decision and reacted unpleasantly surprised. The exact number of places for Maastricht is not yet known. The Dean also informs the Council about the dismissal of a professor from FHML. After extensive investigation and attempts to find a resolution, UM decided to initiate a dissolution procedure in court. This is not the preferred approach, and usually, such matters are resolved differently. At the Council's request, the Dean explains that the current procedures for handling …
- MMM2020 Solutions_0.pdf (61.06 kB, PDF)… −p. Therefore, the slope equals −p 1−p . It now easily follows that this line is described by: y = − p 1−p x + p 1−p + 1− p For the line with parameter q we have likewise y = − q 1−q x + q 1−q + 1− q. At the intersection point of these two lines we find that the same y-value occurs if − p 1−p x + p 1−p + 1− p = − q 1−q x + q 1−q + 1− q which is equivalent to [ q 1−q − p 1−p ]x = q 1−q + 1− q − [ p 1−p + 1− p] or [q(1− p)− p(1− q)]x = q(1− p) + (1− q)2(1− p)− p(1− q)− (1− p)2(1− q) This can be … y = p(1 − q) + 1 − p = 1 − pq. Summarizing, the intersection point has coordinates: (1− (1− p)(1− q), 1− pq) or (p + q − pq, 1− pq) (c) It’s a parabola. See after part (d). (d) Consider the intersection point for the two lines with parameters p and q, computed under (b). If we keep one line (with parameter p) fixed and we 1 vary the other parameter q, we see that their intersection point converges to the tangent point of the fixed line at C, if q converges to p. So, if we choose p = q, we find that … xF = 4 and xP = 6. By similar logic, the expected number of cards one has to by in order to get pictures of Finn and Poe, xFP , satisfies the equation xFP = 1/4 · (1 + xP ) + 1/6 · (1 + xF ) + 7/12 · (1 + xFP ) which implies after a straightforward computation that xFP = 73 5 . Similarly, xRP = 7 and xRF = 52 7 . Finally, the desired number xRFP satisfies the equation xRFP = 1/3 · (1 + xFP ) + 1/4 · (1 + xRP ) + 1/6 · (1 + xRF ) + 1/4 · (1 + xRFP ) with solution xRFP ≈ 8.22. Answer to Problem 4: …
- MMM2020 Solutions.pdf (61.06 kB, PDF)… −p. Therefore, the slope equals −p 1−p . It now easily follows that this line is described by: y = − p 1−p x + p 1−p + 1− p For the line with parameter q we have likewise y = − q 1−q x + q 1−q + 1− q. At the intersection point of these two lines we find that the same y-value occurs if − p 1−p x + p 1−p + 1− p = − q 1−q x + q 1−q + 1− q which is equivalent to [ q 1−q − p 1−p ]x = q 1−q + 1− q − [ p 1−p + 1− p] or [q(1− p)− p(1− q)]x = q(1− p) + (1− q)2(1− p)− p(1− q)− (1− p)2(1− q) This can be … y = p(1 − q) + 1 − p = 1 − pq. Summarizing, the intersection point has coordinates: (1− (1− p)(1− q), 1− pq) or (p + q − pq, 1− pq) (c) It’s a parabola. See after part (d). (d) Consider the intersection point for the two lines with parameters p and q, computed under (b). If we keep one line (with parameter p) fixed and we 1 vary the other parameter q, we see that their intersection point converges to the tangent point of the fixed line at C, if q converges to p. So, if we choose p = q, we find that … xF = 4 and xP = 6. By similar logic, the expected number of cards one has to by in order to get pictures of Finn and Poe, xFP , satisfies the equation xFP = 1/4 · (1 + xP ) + 1/6 · (1 + xF ) + 7/12 · (1 + xFP ) which implies after a straightforward computation that xFP = 73 5 . Similarly, xRP = 7 and xRF = 52 7 . Finally, the desired number xRFP satisfies the equation xRFP = 1/3 · (1 + xFP ) + 1/4 · (1 + xRP ) + 1/6 · (1 + xRF ) + 1/4 · (1 + xRFP ) with solution xRFP ≈ 8.22. Answer to Problem 4: …
- Instructie_Bellen met Teams (1).pdf (1.17 MB, PDF)… de gespreksgeschiedenis ..................................................................................... 8 Personen toevoegen aan een gesprek in Teams ................................................................................ 9 Persoonlijke contacten toevoegen in Teams .................................................................................... 11 Een call pick-up groep maken in MS Teams...................................................................................... 13 … 17 2 Informatie vooraf De UM koos in 2020 voor de implementatie van MS Teams om samenwerken ook buiten de reguliere werkplek mogelijk te maken. MS Teams is een onderdeel van het Microsoft 365 ecosysteem voor samenwerking en communicatie. M365 biedt ook een specifieke telefonie- oplossing die naadloos integreert met de andere faciliteiten als MS Teams, de Office-suite en Exchange, Teams Phone System genaamd. Met gebruik van de Teams softphone1 kan men via Teams niet alleen … over MS Teams beschikken, maar kan men ook (nationaal en internationaal) bellen met externen. De Teams Phone System telefonie oplossing draagt ook bij aan de UM strategische IT doelstellingen door de mogelijkheid om vrijwel ‘any time2, any device3, anywhere’ te kunnen communiceren en samenwerken. Teams Phone System wordt meestal gebruikt in combinatie met een softphone, maar er kan ook nog steeds gebruik worden gemaakt van fysieke (MS Teams gecertificeerde) telefoontoestellen. Voor gebruikers van de …
Salzburg Maastricht University Seminar Public Health Strategy - June 2026
The Care and Public Health Research Institute (CAPHRI), The Asssociation of Schools of Public Health in the European Region (ASPHER) and The Open Medical Institute (OMI) have joined forces to build a Public Health Academy.
A New Place for Jurisprudence: Launching the Maastricht Centre of Law & Jurisprudence
After being active for almost a year, the Maastricht Centre of Law & Jurisprudence (MCLJ) officially launched on 23 January 2025
NUTRIM and Open Science
New blog on open science within our research institute, kicked off by Assistant Professor Egon Willighagen
UM Data Science Research Seminar with Clinical Data Science Maastricht
The UM Data Science Research Seminar Series is a monthly session organized by the Institute of Data Science, collaborating with another department, faculty, or institute at Maastricht University. These collaborations aim to bring together scientists from all over UM to discuss breakthroughs and...
17 aprHow Europe Could End
Studium Generale | Schuman Lecture
12 mei