The Extracellular Matrix, Polymers and Biomimetic Materials

Jurica Bauer

Bachelor RMT Experience Day

22nd November 2023 Maastricht

© 2014 Pearson Education, Inc.

2 Maastricht UMC+

Maastricht University

The Three "Pillars" of Regenerative Medicine (RM)

The Extracellular Matrix, Polymers and Biomimetic Materials

What is extracellular matrix (ECM)?

What are polymers?

What are biomimetic materials?

Maastricht University

Objectives

- To explain the nature, structure, and function of the major components of the ECM
- To illustrate how these basic building blocks can create highly specialized environments
- To recognize polymer structures and properties
- To explain how materials scientists try to create ECM-like environments
- To identify current trends in ECM-like materials

💋 Maastricht UMC+

From Cells to Tissues and Organs

What is inside of a cell? What is outside of a cell?

Maastricht University

human body

💋 Maastricht UMC+

Cellular Environment

Maastricht University

https://www.khanacademy.org/science/biology/structure-of-a-cell/cytoskeleton-junctions-and-extracellularstructures/v/extracellular-matrix; drawing © David Goodsell; diagram adapted from Cell and Molecular Biology Concepts and Experiments by Karp, 2010; SEM image: https://doi.org/10.1155/2015/542687 💋 Maastricht UMC+

Extracellular Matrix

• Structural Support

Maastricht University

- Cell Adhesion
- Cell Signalling
- Regulation of Cell Behavior
- Storage of Bioactive Molecules
- Tissue Development and Repair

Int. J. Mol. Sci. 2020, 21(15), 5447; https://doi.org/10.3390/ijms21155447

Extracellular Matrix

- A complex and dynamic network of proteins and carbohydrates that provides structural and biochemical support to the surrounding cells and enables survival and proliferation
 - Proteins (collagen, elastin)
 - Polysaccharides (hyaluronic acid)
 - Proteoglycans (aggrecan, perlecan, etc)
 - Large Glycoproteins (laminins, fibronectin, etc)

The exact nature and ratios of these molecules differ per tissue. *

Composition of ECM

What are:

- proteins
- carbohydrates and polysaccharides
- glycoproteins
- proteoglycans

- polymers

Maastricht University

Polymers

Polymers—very large molecules made by repeated linking together of monomers

Polymers

- Natural polymers polymers found in living organisms, like starches, proteins, and DNA
- Synthetic polymers polymers made in a lab
 - Plastics, Styrofoam cups, nylon rope, Plexiglas

High molecular weights!

Peptides and Proteins

 Amino acids link together via reaction of the amine end of one amino acid with the carboxylic end of another—a peptide (amide) bond.

Amino acid general structure

Protein Structure

Levels of Protein Structure

🕐 Maastricht UMC+

 α -Helix protein structure

Protein Structure

Interactions That Maintain Tertiary Structure

🕐 Maastricht UMC+

Collagen in the ECM

Maastricht University

About 25% of all the protein in your body is collagen. Collagen is a major structural protein, providing strength to tendons, bone, and support to organs. It is the most abundant protein in the ECM.

The "triple helix" structure of collagen is an excellent example of supramolecular organization.

Collagen when cooked, denatures and forms gelatin, a popular ingredient in cooking, and our most common hydrogel.

© David Goodsell

Carbohydrates

CHO

H

H٠

H

HO

OH

٠н

-OH

٠ОН

CH₂OH

Fischer projection formula

сно

HO

Glucose

-OH

*C**-−OH**

С--ОН

CH₂<mark>OH</mark>

- Carbon, hydrogen, and oxygen (CH₂O)_n
- Polyhydroxycarbonyls that have many
 OH and one C=O
 - Aldose when C=O is aldehyde
 - Ketose when C=O is ketone
- The many polar groups make simple carbohydrates soluble in water
 - Blood transport

Maastricht University

Pearson https://www.masterorganicchemistry.com/2018/01/25/con ©2021 Pearson Education Ltd. verting-a-fischer-projection-to-a-haworth-and-vice-versa/

Aaastricht UMC+

Maastricht University

Carbohydrates

- Monosaccharides cannot be broken down into simpler carbohydrates.
- **Disaccharides** are two monosaccharides attached by a glycosidic link.
 - Glycosidic link forms with the condensation of H₂O between two monosaccharides.
- **Polysaccharides** are three or more monosaccharides linked into complex chains.

19

Starch, cellulose and glycogen are polysaccharides of glucose.
 Pearson
 ©2021 Pearson Education Ltd.

🕐 Maastricht UMC+

Maastricht University

Disaccharides & Polysaccharides

Aggrecan Molecule

Aggrecan (ACAN) is a high molecular weight **proteoglycan** in ECM. It exhibits a bottlebrush structure, in which <u>chondroitin sulfate</u> and <u>keratan sulfate</u> glycosaminoglycan (GAG) chains are attached to an extended protein core.

Maastricht University

Knowledge Gap

- How do we recreate the ECM?
- How do we control the ECM?
- How does the reciprocal interaction Cells-Matrix work?
- How can we mimic functions of the ECM with (synthetic) materials? (biomimetic materials)

Hydrogels

 3D network of hydrophilic polymer chains capable of absorbing and retaining water or aqueous solutions

Maastricht University

https://www.medicalnewstoday.com/articles/hy drogel-patches-could-prevent-melanomabreast-cancer-and-colon-cancer-from-recurring

technology/water-conservation-hydrogels

Hydrogels

Mostly water

- Water-soluble polymers
- Provide structural support and adhesion for cells
- Easy to change mechanical properties
- Preferred use of bio-sourced materials
 - Gelatin
 - Hyaluronic acid

- Most widely used 3D cell culture platform
- Most ECM materials are hydrogelish in behaviour
 - Collagen
 - Gelatin
 - Laminin
 - Fibrin
 - GAG's

2 Maastricht UMC+

Biomaterials in RM

Alginate hydrogels for hosting cells

Maastricht University

Potential controlled release of drugs, hormones, growth factors, cells, etc → Practical & Case

https://doi.org/10.1016/j.carbpol.2015.05.021

Supramolecular interactions!

2 Maastricht UMC+

Fabrication

Van Loon et al. Cardiology and Cardiovascular Research 2013, Xeltis 2016

Electrospinning

Textile technologies

3D (Bio)Printing

Dynamic ECM-like Biomaterials

- Biomaterials should not be simply static
- Movement towards more dynamic or responsive systems
- Closer attempts at mimicking ECM functions

Biodegradability

Maastricht UMC+

When is polymer degradation desired and when is it not?

2 Maastricht UMC+

Maastricht University

Biodegradability

Break down and HO 3 н decomposition of material under natural H_2O Hydrolysis adds a water conditions molecule, breaking a bond. H HC HO 3 CH_3 CH3 CH_3 OH. Ο HO +**Hydrolysis** CH_2 CH3 29 Carboxyl End Group Poly (lactic acid) Hydroxyl End Group

Maastricht UMC+

Responsive Biomaterials

Maastricht University

Mater. Horiz., 2017, 4, 1020.

Chemical equilibrium!

100 µm

8-H:8-BA

Tunable:

- mechanical properties
- biological activities
- molecule or cell release
- etc

🕐 Maastricht UMC+

Outlook Smart Biomaterials

 Responding to physiological and external stimuli

Maastricht University

- Control over cell behavior
- Multifunctional
- Personalized

ACS Biomater. Sci. Eng. 2018, 4, 3809.

Objectives & Summary

- To explain the nature, structure, and function of the major components of the ECM
- To illustrate how these basic building blocks can create highly specialized environments
- To recognize polymer structures and properties
- To explain how materials scientists try to create ECM-like environments
- To identify current trends in ECM-like materials

Back-up Slides

Carbohydrates

• Several chiral carbons in a carbohydrate, resulting in many possible stereoisomers

Natural sugars are always D-sugars! (check the D/L notation yourself)

Glucose

Maastricht University

Pearson

D. Klein Organic Chemistry, Wiley, 3rd edition.

©2021 Pearson Education Ltd.

Maastricht University

arson

Polymers

Proteins

- Involved in practically every facet of cell function
- Structural elements of muscle, skin, and cartilage
- Different classes of proteins with varied function
- Polymers of amino acids

Maastricht University

Amino Acids

- Consist of a carbon atom—called the α-carbon—bonded to four different groups: amine group, R group (or side chain), carboxylic acid group, and hydrogen atom
- $-NH_2$ group on carbon adjacent to COOH
- All amino acids except for glycine are chiral; all natural amino acids feature the L-chirality MCAT-Review.org

Amino Acids

• The main difference between amino acids is the side chain.

- R group

- Some R groups are polar while others are nonpolar.
- Some polar R groups are acidic while others are basic.

Waastricht UMC+

Maastricht University

Amino Acids

https://www.expii.com/t/amino-acids-overview-structure-10076

41

Aaastricht UMC+

Maastricht University

Amino Acids

The pH-dependent structures of a typical amino acid

For a typical amino acid with a neutral sidechain R :

- · the positively charged form (+1) dominates at low pH,
- · the zwitterionic (neutral) form dominates at intermediate pH, and
- the negatively charged form (-1) dominates at high pH

https://www.expii.com/t/amino-acids-overview-structure-10076

Maastricht UMC+

Relevant Proteins hPTH (1-34) N (168) W23 169 Indian Hedgehog Protein E177 K13 **hPTH/PTHrP** Receptor hPTH-PTHrP Complex 43 https://doi.org/10.1016/S0021-9258(19)61502-4

Human Growth Hormone