Research profile
Henry C Woodruff employs machine learning techniques and advanced quantitative image analysis methods to bring precision medicine closer to clinical implementation. Currently he is working on dozens of projects focused on finding prognostic and diagnostic imaging biomarkers related to diseases such as cancer, diabetes, Alzheimer's, and stroke
Publications
Core publications:
-
Peerlings, J., Woodruff, H. C., Winfield, J. M., Ibrahim, A., Van Beers, B. E., Heerschap, A., Jackson, A., Wildberger, J. E., Mottaghy, F. M., DeSouza, N. M., & Lambin, P. (2019). Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial. Scientific Reports, 9, 1-10. [4800]. https://doi.org/10.1038/s41598-019-41344-5
-
Sanduleanu, S., Woodruff, H. C., de Jong, E. E. C., van Timmeren, J. E., Jochems, A., Dubois, L., & Lambin, P. (2018). Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiotherapy and Oncology, 127(3), 349-360. https://doi.org/10.1016/j.radonc.2018.03.033
-
Morin, O., Vallieres, M., Jochems, A., Woodruff, H. C., Valdes, G., Braunstein, S. E., Wildberger, J. E., Villanueva-Meyer, J. E., Kearney, V., Yom, S. S., Solberg, T. D., & Lambin, P. (2018). A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change. International Journal of Radiation Oncology Biology Physics, 102(4), 1074-1082. https://doi.org/10.1016/j.ijrobp.2018.08.032
-
Kipritidis, J., Tahir, B. A., Cazoulat, G., Hofman, M. S., Siva, S., Callahan, J., Hardcastle, N., Yamamoto, T., Christensen, G. E., Reinhardt, J. M., Kadoya, N., Patton, T. J., Gerard, S. E., Duarte, I., Archibald-Heeren, B., Byrne, M., Sims, R., Ramsay, S., Booth, J. T., ... Keall, P. J. (2019). The VAMPIRE challenge: A multi-institutional validation study of CT ventilation imaging. Medical Physics, 46(3), 1198-1217. https://doi.org/10.1002/mp.13346
-
Ibrahim, A., Vallieres, M., Woodruff, H., Primakov, S., Beheshti, M., Keek, S., Refaee, T., Sanduleanu, S., Walsh, S., Morin, O., Lambin, P., Hustinx, R., & Mottaghy, F. M. (2019). Radiomics Analysis for Clinical Decision Support in Nuclear Medicine. Seminars in Nuclear Medicine, 49(5), 438-449. https://doi.org/10.1053/j.semnuclmed.2019.06.005
-
van Timmeren, J. E., Carvalho, S., Leijenaar, R. T. H., Troost, E. G. C., van Elmpt, W., de Ruysscher, D., Muratet, J-P., Denis, F., Schimek-Jasch, T. A., Nestle, U., Jochems, A., Woodruff, H. C., Oberije, C., & Lambin, P. (2019). Challenges and caveats of a multi-center retrospective radiomics study: an example of early treatment response assessment for NSCLC patients using FDG-PET/CT radiomics. PLOS ONE, 14(6), [0217536]. https://doi.org/10.1371/journal.pone.0217536
-
Keek, S. A., Leijenaar, R. T., Jochems, A., & Woodruff, H. C. (2018). A review on radiomics and the future of theranostics for patient selection in precision medicine. British Journal of Radiology, 91(1091), [20170926]. https://doi.org/10.1259/bjr.20170926
-
Lambin, P., Leijenaar, R. T. H., Deist, T. M., Peerlings, J., de Jong, E. E. C., van Timmeren, J., Sanduleanu, S., Larue, R. T. H. M., Even, A. J. G., Jochems, A., van Wijk, Y., Woodruff, H., van Soest, J., Lustberg, T., Roelofs, E., van Elmpt, W., Dekker, A., Mottaghy, F. M., Wildberger, J. E., & Walsh, S. (2017). Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 14(12), 749-762. https://doi.org/10.1038/nrclinonc.2017.141
-
Granzier, R. W. Y., van Nijnatten, T. J. A., Woodruff, H. C., Smidt, M. L., & Lobbes, M. B. (2019). Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review. European Journal of Radiology, 121, [108736]. https://doi.org/10.1016/j.ejrad.2019.108736
Most recent publications:
-
Keek, S. A., Kayan, E., Chatterjee, A., Belderbos, J. S. A., Bootsma, G., van den Borne, B., Dingemans, A-M. C., Gietema, H. A., Groen, H. J. M., Herder, J., Pitz, C., Praag, J., De Ruysscher, D., Schoenmaekers, J., Smit, H. J. M., Stigt, J., Westenend, M., Zeng, H., Woodruff, H. C., ... Hendriks, L. (2022). Investigation of the added value of CT-based radiomics in predicting the development of brain metastases in patients with radically treated stage III NSCLC. Therapeutic Advances in Medical Oncology, 14, [17588359221116605]. https://doi.org/10.1177/17588359221116605
-
Granzier, R. W. Y., Ibrahim, A., Primakov, S., Keek, S. A., Halilaj, I., Zwanenburg, A., Engelen, S. M. E., Lobbes, M. B. I., Lambin, P., Woodruff, H. C., & Smidt, M. L. (2022). Test-Retest Data for the Assessment of Breast MRI Radiomic Feature Repeatability. Journal of Magnetic Resonance Imaging, 56(2), 592-604. https://doi.org/10.1002/jmri.28027
-
Keek, S. A., Beuque, M., Primakov, S., Woodruff, H. C., Chatterjee, A., van Timmeren, J. E., Vallières, M., Hendriks, L. E. L., Kraft, J., Andratschke, N., Braunstein, S. E., Morin, O., & Lambin, P. (2022). Predicting Adverse Radiation Effects in Brain Tumors After Stereotactic Radiotherapy With Deep Learning and Handcrafted Radiomics. Frontiers in Oncology, 12, [920393]. https://doi.org/10.3389/fonc.2022.920393
-
Refaee, T., Salahuddin, Z., Frix, A-N., Yan, C., Wu, G., Woodruff, H. C., Gietema, H., Meunier, P., Louis, R., Guiot, J., & Lambin, P. (2022). Diagnosis of Idiopathic Pulmonary Fibrosis in High-Resolution Computed Tomography Scans Using a Combination of Handcrafted Radiomics and Deep Learning. Frontiers in medicine, 9, [915243]. https://doi.org/10.3389/fmed.2022.915243
-
Primakov, S. P., Ibrahim, A., van Timmeren, J. E., Wu, G. Y., Keek, S. A., Beuque, M., Granzier, R. W. Y., Lavrova, E., Scrivener, M., Sanduleanu, S., Kayan, E., Halilaj, I., Lenaers, A., Wu, J. L., Monshouwer, R., Geets, X., Gietema, H. A., Hendriks, L. E. L., Morin, O., ... Lambin, P. (2022). Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nature Communications, 13(1), [3423]. https://doi.org/10.1038/s41467-022-30841-3
-
Nan, Y., Del Ser, J., Walsh, S., Schonlieb, C., Roberts, M., Selby, I., Howard, K., Owen, J., Neville, J., Guiot, J., Ernst, B., Pastor, A., Alberich-Bayarri, A., Menzel, M. I., Vos, W., Flerin, N., Charbonnier, J. P., van Rikxoort, E., Chatterjee, A., ... Yang, G. (2022). Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions. Information Fusion, 82, 99-122. https://doi.org/10.1016/j.inffus.2022.01.001
-
Yan, C. G., Hao, P., Wu, G. Y., Lin, J., Xu, J., Zhang, T. J., Li, X. Y., Li, H. X., Wang, S. B., Xu, Y. K., Woodruff, H. C., & Lambin, P. (2022). Machine learning-based combined nomogram for predicting the risk of pulmonary invasive fungal infection in severely immunocompromised patients. Annals of translational medicine, 10(9), [514]. https://doi.org/10.21037/atm-21-4980
-
Refaee, T., Salahuddin, Z., Widaatalla, Y., Primakov, S., Woodruff, H. C., Hustinx, R., Mottaghy, F. M., Ibrahim, A., & Lambin, P. (2022). CT Reconstruction Kernels and the Effect of Pre- and Post-Processing on the Reproducibility of Handcrafted Radiomic Features. Journal of Personalized Medicine, 12(4), [553]. https://doi.org/10.3390/jpm12040553
-
Yan, C. G., Wang, L. F., Lin, J., Xu, J., Zhang, T. J., Qi, J., Li, X. Y., Ni, W., Wu, G. Y., Huang, J. B., Xu, Y. K., Woodruff, H. C., & Lambin, P. (2022). A fully automatic artificial intelligence-based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis. European Radiology, 32(4), 2188-2199. https://doi.org/10.1007/s00330-021-08365-z
-
Sforazzini, F., Salome, P., Moustafa, M., Zhou, C., Schwager, C., Rein, K., Bougatf, N., Kudak, A., Woodruff, H., Dubois, L., Lambin, P., Debus, J., Abdollahi, A., & Knoll, M. (2022). Deep Learning-based Automatic Lung Segmentation on Multiresolution CT Scans from Healthy and Fibrotic Lungs in Mice. Radiology: Artificial Intelligence, 4(2), [210095]. https://doi.org/10.1148/ryai.210095
Other publications:
https://iopscience.iop.org/article/10.1088/0004-637X/692/1/924/meta
https://www.aanda.org/articles/aa/abs/2004/26/aa0826/aa0826.html
https://iopscience.iop.org/article/10.1086/523936/meta
https://www.sciencedirect.com/science/article/pii/S036030161503062X
https://aapm.onlinelibrary.wiley.com/doi/full/10.1118/1.4816384
https://iopscience.iop.org/article/10.1088/0004-637X/691/2/1328/meta
https://aapm.onlinelibrary.wiley.com/doi/full/10.1118/1.4817484
https://iopscience.iop.org/article/10.1088/0004-637X/707/1/632/meta
https://aapm.onlinelibrary.wiley.com/doi/full/10.1118/1.4937599
https://link.springer.com/article/10.1186/s13014-016-0682-y
https://iopscience.iop.org/article/10.1088/0031-9155/59/1/61/meta
https://iopscience.iop.org/article/10.1088/1742-6596/444/1/012042/meta
https://www.birpublications.org/doi/full/10.1259/bjr.20190948
https://onlinelibrary.wiley.com/doi/full/10.1002/jcsm.12512
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.12199
https://www.karger.com/Article/Abstract/505429
https://www.sciencedirect.com/science/article/pii/S0720048X19303869
https://www.sciencedirect.com/science/article/pii/S1046202320301110
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232639
https://link.springer.com/content/pdf/10.1007/s00330-019-06597-8.pdf

H.C.A. Woodruff
Deputy Head of The D-Lab