

WOMEN IN DATA SCIENCE MAASTRICHT

#WiDSMaastricht2023

Running Data Science Project in Energy Industry

Cristiana Pompei, Anabel Maréchal and Jelena Grujić

Electric power supply chain A market characterised by both liberalised and regulated activities

• Liberalisation of the production and supply activities

Regulated monopoly for transport and distribution

Luminus, an integrated player on the Belgian electricity and gas market

2nd largest electricity producer

2nd largest supplier of electricity and natural gas

A diversified portfolio of production and 2.25 million contracts

B2C customer portfolio at end of 2021 (k# POD)

Global warming is a major challenge Towards carbon neutrality in 2050

Bloomberg Green

Global Temperature Change Last year was the second warmest year on record. The five warmest years have all occurred since 2015.

••• difference in temperature – Average temperature

Developing new onshore wind energy

WOMEN IN DATA SCIENCE MAASTRICHT

In-house Wind Atlas

- Development of wind resources is expensive and wind resources uncertain
- It allows to evaluate the wind resource for new development projects of wind parks (avoided costs for wind studies 50-70k€/ year
- Combines measured wind data and meteorological data to evaluate the wind in the past 20 years

Wind Power Forecast

Forecast the power production of each of our wind parks at a granularity of 15 minutes for an update every hour.

Mix of few ML models based on multiple weather forecasts to reduce the risk and increase our accuracy

Long Term Forecast of customer consumption

- A new ML model to forecast Energy demand for the next 3 years
- It allows to evaluate different scenarios to match supply with demand and to offer fixed price contract to final customers

LTF Accuracy KPI	FIX POD's Avg Abs Deviation
Dec/21 actuals	3,42%
Target 2022	3,25%
Target 2023	2,00%
Target 2024	1,50%

In-house Wind Atlas

WiDS 2023

Introduction

Current situation:

- Development of wind turbines is expensive
- Wind resources uncertain

Risky investment decision

- **Wind Resource Assessment** by external parties
- **BUT** the analysis is *expensive* and is a complete *black box*

Goal:

In-house tool to perform Wind Resource Assessments and be able to:

- Avoid costs
- Challenge studies
- Reduce the risk

Introduction

How to proceed ?

• Tools such as WindPro :

Luminus has wind data of:

- 250+ wind turbines
- Metering mast campaigns
- LIDAR campaigns

Methodology

- + Measurements at hub height
- 2 years data

- + 20 years data
- Fewer measuring points

Calibrate the ERA5 data thanks to the data from the WTGs via a **machine learning** algorithm in order to recreate time series of the wind speed over 20 years

=

Ideal wind speed data for our wind resource assessment !

Methodology

- □ But first step: CLEAN the data !
- 1. Delete frozen data, NaN data, ...

Timestamp	Wind Speed	Wind Direction	Active Power	Temperature
2022-02-14 00:01:00	5.21	138.7	236	13.82
2022-02-14 00:02:00	6.4	143.1	564	13.71
2022 02 14 00:03:00	6.4	143.1	564	13.71
2022 02 14 00:04:00	6.4	143.1	564	13.71
2022 02 14 00:05:00	NaN	137.5	347	14.2
2022-02-14 00:06:00	6.2	135.4	540	14.5

2. Suppress wake effect (= effect of the neighboring wind turbines on the wind)

For relevant result we need to extract the "Free Wind"= wind without the impact of the wind turbines measuring it

3. Remove uncoherent points based on the power curve of the WTG

3. Remove uncoherent points based on the power curve of the WTG

- 4. Wind turbine measurements are not always reliable:
- Bad measurements of the wind (defective anemometers,...)

 \Box Try to avoid using the wind speed directly

□ Use "Reconstructed wind speed" based on theoretical power curve

Assessing the performance of the model

Goal : have a good estimation of the wind over 20 years

Model is allowed to not predict perfectly each point

The model should not be constantly over- or underestimating the wind speed

□ Special attention to the **distribution** of the *real* vs. *predicted* wind speed

Long Term Forecasting

ELECTRICITY RATE PLAN

Long Term Forecasting

ELECTRICITY RATE PLAN

Long Term Forecasting

ELECTRICITY RATE PLAN

What do we need to change?

Old LTF

- Billing engine (SAP)
- Limited by on premise server
- Black box
- Takes more than 24h
- Manual assumptions
- No ML

Actions

- Improve processes
- Improve predictions

The models – Churn prediction

Survival analysis

Kaplan-Meier curve

Cox proportional hazards model

The models – Volume prediction

"It has been said that history repeats itself. This is perhaps not quite correct; it merely rhymes." Theodor Reik (not Mark Twain)

- Historical tendences
- Yearly fluctuations

FIRST IMPROVE PROCESSES!

Analytics And Data Science

Data Scientist: The Sexiest Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and D.J. Patil

From the Magazine (October 2012)

2012

Should You Become a Data Engineer in 2021?

2021

Data Engineering is the new Data Science

Nicholas Leong Mar 1 · 7 min read *

Doing Data Science at large scale

https://omegapoint.se/devops

Doing Data Science at large scale

https://omegapoint.se/devops

Doing Data Science at large scale

Only 13% of Data Science projects goes into production

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-proje cts-never-make-it-into-production/

https://omegapoint.se/devops

From the notebook

to production model

Ingestion

• Easy to add new tables

Data Wrangling - Cleaning and preprocessing

DATA SCIENCE

WOMEN IN DATA SCIENCE MAASTRICHT

Day in a life of veteran data wrangler

How do we make this better?

Data platform

NEO

ML in Cloud

BI in Cloud

Machine Learning & Al Live use cases

Aero Condensor Backpressure Monitor to avoid trip

Generator Temperature

Monitor to avoid damage

Wind Onshore and Offshore Power Forecast

> Weather Alerts: Saved 20% FTE

Wind Atlas Avoided costs on wind studies and lower risk for investment decisions AMR Solar Forecast accuracy increased by 2,8%

Day Ahead Price Forecast improved bidding strategy

Day Ahead Imbalance Forecast improved bidding strategy Churn protect customer portfolio

Upsell for services increased revenu

Lead Generation cost reduction

Solar panel propensity new solar panel installation

Long Term Forecasting fixed price contract

Machine Learning & AI Live use cases

Aero Condensor Backpressure Monitor to avoid trip

Generator Temperature

Monitor to avoid damage

Wind Onshore and Offshore **Power Forecast**

> Weather Alerts: Saved 20% FTE

Wind Atlas Avoided costs on wind studies and lower risk for investment decisions

AMR Solar Forecast accuracy increased by 2,8% **Day Ahead Price Forecast** improved bidding strategy

Day Ahead Imbalance Forecast improved bidding strategy

Churn protect customer portfolio

Upsell for services increased revenue

Lead Generation cost reduction

Solar panel propensity new solar panel installation

Long Term Forecasting fixed price contract

WOMEN IN DATA SCIENCE MAASTRICHT

Conclusions

Data bring real value to:

Business

Planet

Customers

Thank you

Karen Dedecker Data Scientist

Michalina Igla Front End developer

Geanina Masgras Scrum master

Ly Huong Chhor Data Engineer

Francesca Onofrj Wind expert

Some of our awesome male colleagues:

Bernard Sacré, Jean-Michel Begon, Philippe Habay, Pierre Brogniet, Bram Stepman, Wouter Bailleul, Kevin Van Hees, Clement Desseyn, Robin Munier

Neo Data Platform Team

