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Introduction days
27 August 2024 	 (Bachelor DSAI)
28 August 2024 	 (Bachelor CS)
29 August 2024 	 (Masters, premasters, exchange)
29 August 2024 	 (BBQ event for all new students)
30 August 2024 �	� (Mentor event for all new 

bachelor students) 
24 January 2025 	 (February intake)

Exam periods
14 - 18 October 2024: 	 Exams period 1 -> all
9 - 13 December 2024: 	 Exams period 2 -> all
17 - 21 March 2025:	 Exams period 4 -> all
19 - 23 May 2025:	 Exams period 5 -> all

Resits period 
9 - 13 December 2024: 	� Resit period 1 -> BY2, 3  

and Masters
20 - 24 January 2025: 	 Resit period 1 and 2 -> BY1
17 - 21 March 2025: 	� Resit period 2 -> BY2, 3 and 

Masters
19 - 23 May 2025:	 Resit period 4 -> Masters
16 - 20 June 2025:	� Resit period 4 and 5 -> BY1,  

2, 3 and Masters

Graduation
26 September 2024 (Masters)
End November 2025 (Bachelor and Master)

(Public) Holiday, no courses
Christmas: 16 December 2024 - 3 January 2025 
Carnival break: 3 - 7 March 2025
Good Friday: 18 April 2025
Easter Monday: 21 April 2025
Liberation Day: 5 May 2025
Ascension Day and Bridging Day: 29 - 30 May 2025 
Whit Monday: 9 June 2025

Academic Calendar 2024-2025
Bachelor’s Programme Data Science and Artificial Intelligence (year 1, 2 and 3) 
Bachelor’s Programme Computer Science (year 1 and 2) and 
Master’s Programmes Artificial Intelligence and Data Science for Decision Making (year 1 and 2)

Inkom Maastricht University
19-22 August 2024

Education periods
Period 1: 2 September - 11 October 2024  
Period 2: 28 October - 6 December 2024
Period 3: project weeks, see below  
Period 4: 27 January - 14 March 2025
Period 5: 31 March - 16 May 2025
Period 6: project weeks, see below

Preparation weeks
assignments are possible, but there will be no 
scheduled activities on site. 
Period 1: 21 October – 25 October 2024
Period 4: 24 March – 28 March 2025  

Project weeks
Period 3: 6 January - 17 January 2025 (BY1)  
Period 3: 6 January - 24 January 2025 (all other) 
BY1: Final presentation: January 2025
BY2: Final presentation: January 2025
BY3: Final presentation: January 2025
MY1: Project seminar: January 2025
Period 6: 26 May - 13 June 2025
BY1: Final presentation: June 2025
BY2: Final presentation: June 2025
MY1: Project seminar: June 2025

Bachelor Thesis Winter Conference:  
2-6 December 2024

Resit Bachelor Thesis Winter Conference:  
20-24 January 2025

Bachelor Thesis Summer Conference:  
10-13 June 2025

Resit Bachelor Thesis Summer Conference:  
25-29 August 2025

DACS bachelor students will have to register for their own courses and resits through the Student 
Portal. DACS master students will have to register their courses through a form which will be sent 
by Student Affairs.
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1	 Education: the profile of the study 
Data Science & Artificial Intelligence, 
Computer Science, Artificial Intelligence, 
and Data Science for Decision Making
1.1	 What are the programmes about? 

The Bachelor’s Programmes Computer Science 
and Data Science & Artificial Intelligence, and 
the Master’s Programmes Artificial Intelligence 
and Data Science for Decision Making of the 
Faculty of Science and Engineering at Maastricht 
University are embedded within the Department 
of Advanced Computing Sciences.

At the Department of Advanced Computing 
Sciences (DACS), research and education are 
tightly linked. Our academic staff consists of 
experienced lecturers and researchers that 
are well known in the international scientific 
community. You will be taught by lecturers from 
DACS, and you will become part of a tight-knit 
community consisting of approximately 1200 
bachelor’s and master’s students and 100 staff 
members. Together, we come from over 50 
different countries. The department has its own 
dedicated study association, MSV Incognito, 
of which all students automatically become a 
member.

The department’s research activities span 
the disciplines and interfaces of artificial 
intelligence, data science, computer science, 
applied mathematics, and robotics, covering the 
entire spectrum from curiosity-driven research 
to responsible societal applications, often taking 
on an interdisciplinary character. Contributions 
to areas such as multi-agent systems, (medical) 
signal and image processing, machine learning, 
explainable AI, FAIR principles, game theory, 
intelligent search techniques, computer vision, 
cyber-security, and affective computing are 
internationally recognized. You will be exposed 
to the department’s research through several 
semester projects, and your thesis project, 

among all.

1.2	 Study System

1.2.1	 Bachelor Data Science and  Artificial 
Intelligence
The bachelor’s programme in Data Science & 
Artificial Intelligence is a three-year programme. 
We chose for a broad setup of the curriculum, so 
that students can decide on the way they would 
like to specialize during the final stage.   

Year 1
Period 1 Period 2 Period 

3
Period 4 Period 5 Period 

6

Procedural 
Programming;

Objects in  
Programming;

Data  
Structures 
and  
Algorithms;

Computational 
and Cognitive 
Neuroscience;

Discrete 
Mathematics;

Calculus; Linear 
Algebra;

Numerical 
Methods;

Introduction 
to Data 
Science and 
Artificial 
Intelligence

Logic Principles 
of Data 
Science

Software 
Engineering

PROJECT PROJECT

Year 2
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

Databases; Machine 
Learning;

Human 
Computer 
Interaction 
& Affective 
Computing;

Philosophy 
and Artificial 
Intelligence;

Probability 
and  
Statistics;

Simulation 
and Statistical 
Analysis;

Mathematical 
Modelling;

Linear  
Programming;

Graph 
Theory

Reasoning 
Techniques 

1 out of the 
electives:  
* �Theoretical 

Computer 
Science

* �Multi-
variable 
Calculus

Natural 
Language 
Processing

PROJECT PROJECT

P
R
O
J
E
C
T

P
R
O
J
E
C
T

P
R
O
J
E
C
T

P
R
O
J
E
C
T
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Year 3
Period 1* Period 2* Period 3 Period 4 Period 5 Period 6

Digital Society; Computer 
Security;

Operations 
Research Case 
Studies **

BACHELOR’S 
THESIS

Game Theory; Software 
and Systems 
Verification;

Intelligent 
Systems;

Semantic Web; Logic for 
Artificial 
Intelligence;

Data Analysis

Recommender 
Systems;

Parallel  
Program-
ming;

Robotics and 
Embedded 
Systems;

Large Scale 
IT and Cloud 
Computing;

Introduction 
to Quantum 
Computing

Introduction 
to Bio- 
Informatics

PROJECT BACHELOR’S THESIS

* Third year students choose 6 optional courses (3 in period 
3.1 and 3 in period 3.2) in addition to the semester project in 
semester 1 of year 3. In case students have passed both electives 
of period 2.4, either the course Theoretical Computer Science or 
Multivariable Calculus can replace 1 of the third year electives. 
In semester 1 of year 3, student can also choose (1) elective 
courses at other UM bachelor programmes of at most 18 ECTS 
(2) the minor Entrepreneurship or (3) the educational minor. 
(4) Alternatively, students can study abroad for a semester 
at one of our exchange partners (see internationalization 
section below). Please contact the student adviser for more 
information. Also, check the Study Abroad section in the “My 
Organisations” section of Canvas. 

**) The course has capacity of 80 participants (students).

Periods 1, 2, 4 and 5 last seven weeks in total. 
During week 1-6 there are classes and in week 
7 exams. Three courses are offered during each 
period, each course is good for 4 credits (ECTS). Per 
course, five to seven hours of class are offered each 
week in year 1, and about six hours in year 2 and 
3. At the end of periods 1 and 4 there is one week 
planned for study and/or preparation for upcoming 
periods.

Next to these courses, you participate in a group 
project of 6 credits that will last the whole 
semester. Skill classes and project meetings 
are mandatory: you are expected to be present 
during 100% of the skill classes and 100% of 
the project meetings in each academic year. For 
more details about attendance of skill classes 
and project meetings, please check the Education 
and Examination Regulations (EER) and the Rules 
and Regulations (R&R) that are published on the 
Student Portal.

If a student does not contribute sufficiently to the 
project, the project examiners may deviate from 
the group grade for this individual student. The 
project of semester 1 runs during period 1, 2 and 
3. The project of semester 2 runs during period 4, 5 
and 6. For specific details on the project curriculum 
in year 1 see section Project 1-1 and Project 1-2 
with the course descriptions of year 1. 

Periods 3 and 6 last three weeks (except for period 
3 of year 1, which lasts two weeks), and during 
these three weeks, students work full time to finish 
their project assignment. During the three-week 
project periods in periods 3 and 6, you will work 
full-time on a project assignment. This project 
assignment is announced in the beginning of 
periods 1 or 4, along with the group composition. 
At the end of each period, groups are assessed 
on the progress or final results of their work. The 
form of assessment is specific to each project.  The 
examiners give their feedback to the content and 
progress of a project.  The assessment  in principle 
results in the same mark for all  group members. 
However, there can be diversification, see the 
Education and Examination Regulations (EER) and 
the Rules and Regulations (R&R). 

The final stage of your bachelor’s programme, 
period 5 and 6 of year 3 is reserved for writing 
your bachelor’s thesis that equals 18 ECTS. Every 
student has to conduct a short scientific research 
focussed on a relevant topic. This can be empirical 
or theoretical research. Students have acquired 
information on these different research domains 
throughout their educational programme. Each 
student has to hand in a signed bachelor thesis 
project plan to the Bachelor’s thesis coordinator. 
Each student is supervised by a thesis supervisor. 
In the second period of this semester, the students 
conduct their own research. In the end of the last 
period of the semester, each student must present 
their results.

P
R
O
J
E
C
T
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1.2.2 Bachelor Computer Science 
The bachelor’s programme in Computer Science is a 
three-year programme. The programme is designed 
to provide a solid background in fundamental 
computer science, software development, and 
mathematics.

Year 1
Period 1 Period 2 Period 

3
Period 4 Period 5 Period 

6

Procedural 
Programming;

Objects in 
Programming;

Linear 
Algebra;

Databases;

Discrete 
Mathematics;

Calculus; Data 
Structures and 
Algorithms;

Statistics;

Introduction 
to Computer 
Science

Logic Object-
Oriented 
Modelling

Algorithmic 
Design

PROJECT PROJECT

Year 2

Period 1 Period 2 Period 
3

Period 4 Period 5 Period 
6

Computer 
Networks;

Software 
Engineering & 
Architectures;

Embedded 
Programming;

IT Manage-
ment & Privacy

Introduction 
to Artificial 
Intelligence;

Principles of 
Programming 
Languages

Computer 
Security;

Numerical 
Methods

Intelligent 
User 
Interfaces

1 out of the 
two elective 
modules:

Parallel 
Programming

1 out of the 
two elective 
modules

- �Intelligent 
Interaction: 
course Image 
& Video 
Processing + 
Project 2-1: 
Human-
Computer 
Interaction

- �Artificial 
Intelligence 
& Machine 
Learning: 
course 
Machine 
Learning + 
Project 2-1: 
Adaptive 
Systems

- �High- 
Performance 
Computing: 
course High-
Performance 
Computing 
+ Project 
2-2: High-
Performance 
Computing

- �Cyber- 
security and 
IoT: choose 
one course 
between 
Information 
Security or 
Ubiquitous 
Computing 
& IoT + 
Project 2-2: 
Cybersecurity 
& IoT

PROJECT PROJECT

Periods 1, 2, 4 and 5 last seven weeks in total. 
During week 1-6 there are classes and in week 
7 exams. Three courses are offered during each 
period, each course is good for 4 credits (ECTS). Per 
course, five to seven hours of class are offered each 
week in year 1, and about six hours in year 2 and 
3. At the end of periods 1 and 4 there is one week 
planned for study and/or preparation for upcoming 
periods.

Next to these courses, you participate in a group 
project of 6 credits that will last the whole 
semester. Skill classes and project meetings 
are mandatory: you are expected to be present 
during 100% of the skill classes and 100% of 
the project meetings in each academic year. For 
more details about attendance of skill classes 
and project meetings, please check the Education 
and Examination Regulations (EER) and the Rules 
and Regulations (R&R) that are published on the 
Student Portal.

If a student does not contribute sufficiently to the 
project, the project examiners may deviate from 
the group grade for this individual student. The 
project of semester 1 runs during period 1, 2 and 
3. The project of semester 2 runs during period 4, 5 
and 6. For specific details on the project curriculum 
in year 1 see section Project 1-1 and Project 1-2 
with the course descriptions of year 1. 

Periods 3 and 6 last three weeks (except for period 
3 of year 1, which lasts two weeks), and during 
these three weeks, students work full time to finish 
their project assignment.  During the three-week 
project periods in periods 3 and 6, you will work 
full-time on a project assignment. This project 
assignment is announced in the beginning of 
periods 1 or 4, along with the group composition. 
At the end of each period, groups are assessed 
on the progress or final results of their work. The 
form of assessment is specific to each project.  The 
examiners give their feedback to the content and 
progress of a project.  The assessment  in principle 
results in the same mark for all  group members. 
However, there can be diversification, see the 
Education and Examination Regulations (EER) and 
the Rules and Regulations (R&R).  

The final stage of your bachelor’s programme, 
period 5 and 6 of year 3 is reserved for writing 
your bachelor’s thesis that equals 18 ECTS. Every 
student has to conduct a short scientific research 
focused on a relevant topic. This can be empirical 
or theoretical research. Students have acquired 
information on these different research domains 
throughout their educational programme. Each 
student has to hand in a signed bachelor thesis 
project plan to the Bachelor’s thesis coordinator. 
Each student is supervised by a thesis supervisor. 
In the second period of this semester, the students 
conduct their own research. In the end of the last 
period of the semester, each student must present 
their results.

P
R
O
J
E
C
T

P
R
O
J
E
C
T

P
R
O
J
E
C
T

P
R
O
J
E
C
T
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1.2.3 Masters

AI year 1:
Period  

1
Period  

2
Period 

3
Period  

4
Period  

5
Period 

6

Intelligent 
Search and 
Games; 

Advanced 
Concepts 
in Machine 
Learning;

Agents & 
Multi-Agent 
Systems;

Autonomous 
Robotic Sys-
tems;

1 of the  
electives:

1 of the  
electives:

1 of the  
electives:

1 of the  
electives:

Stochastic 
Decision 
Making

Network 
Science

Building and 
Mining Knowl-
edge Graphs

Information 
Retrieval and 
Text Mining

Data Mining Advanced 
Natural 
Language 
Processing

Planning and 
Scheduling

Computer 
Vision

Signal and 
Image 
Processing

Dynamic 
Game Theory

Reinforcement  
Learning

Explainable 
AI (*)

Introduction 
to Quantum 
Computing for 
AI and Data 
Science (**)

PROJECT PROJECT

AI year 2:
Semester 1 Semester 2

Elective Semester:

Courses and Research Project; 

Research Internship; 

Professional Internship;

Quantum Computing specialization 
(pre-requisite: Intro QC) (**);

Study Abroad

THESIS

(*) The course has capacity of 60 participants (students).

(**) The course Introduction to Quantum Computing for AI and 
Data Science is a prerequisite for the elective courses Quantum 
Algorithms, Quantum AI and Quantum Information and 
Security. These four courses, together with a dedicated research 
project on quantum computing, form the specialization in 
Quantum Computing for AI and Data Sciences.

Master Artificial Intelligence

DSDM year 1: 
Period  

1
Period  

2
Period 

3
Period  

4
Period  

5
Period 

6

Data  
Mining

Model  
Identification 
and Data 
Fitting

Computational 
Statistics

Algorithms for 
Big Data

1 of the  
electives:

1 of the  
electives:

1 of the  
electives:

1 of the  
electives:

Signal and 
Image  
Processing

Advanced 
Concepts 
in Machine 
Learning

Dynamic Game 
Theory

Symbolic  
Computation 
and Control

Mathe-
matical 
Optimiza-
tion

Network 
Science

Planning and 
Scheduling

Information 
Retrieval and 
Text Mining

Stochastic 
Decision 
Making

Advanced 
Natural 
Language 
Processing

Building and 
Mining  
Knowledge 
Graphs

Computer 
Vision

Data Fusion Introduction 
to Quantum 
Computing for 
AI and Data 
Science (**)

Explainable 
AI (*)

PROJECT PROJECT

DSDM year 2:
Semester 1 Semester 2

Elective Semester:

Courses and Research Project;

Research Internship;

Professional Internship;

Quantum Computing specialization 
(pre-requisite: Intro QC) (**);

Study Abroad

THESIS

(*) The course has capacity of 60 participants (students)

(**) The course Introduction to Quantum Computing for AI and 
Data Science is a prerequisite for the elective courses Quantum 
Algorithms, Quantum AI and Quantum Information and 
Security. These four courses, together with a dedicated research 
project on quantum computing, form the specialization in 
Quantum Computing for AI and Data Sciences.

Periods 1, 2, 4 and 5 last seven weeks in total. 
During weeks 1-6 there are classes and in week 7 
exams.  Several courses are offered during each 
period, each course equals 6 credits (ECTS). Per 
course, six hours of classes/tutorials are offered, on 
average, per week, in which a teacher will explain 
the theory of the subject or in which you do some 
practical training. At the end of periods 1 and 4 
there is one week dedicated entirely for project 
work.

R
E 
S 
E 
A 
R 
C
H
 
P
R
O
J
E
C
T

R
E 
S 
E 
A 
R 
C
H
 
P
R
O
J
E
C
T

R
E 
S 
E 
A 
R 
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H
 
P
R
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Depending on the master´s programme you 
enrolled in, you are required to take and pass 
several mandatory courses (4 for the AI master, 
and 4 for the DSDM master). These courses are 
underlined in the tables above. Besides these 
courses, there is a selection of electives in year 1. 
You are required to take 1 elective in each period in 
year 1. There are possibilities to take other Master 
courses taught at the Department of Advanced 
Computing Sciences as electives in year 2. 

Next to the courses, in year 1 of your studies you 
participate in a group project of 6 credits every 
semester, that will last the whole semester. 
As a student, you are expected to participate 
actively in doing tasks with respect to the project 
skills training and project meetings. In addition, 
students are expected to cooperate actively with 
their group in order to successfully finish their 
project assignment. If a student fails to do so, 
the student might not be allowed to participate 
in the examination of the project, or the project 
examiners may deviate from the group grade for 
this individual student (see the Education and 
Examination Regulations (EER) and the Rules 
and Regulations (R&R) for details). The project of 
semester 1 runs during periods 1, 2, and 3. The 
project of semester 2 runs during periods 4, 5, and 
6. Periods 3 and 6 last three weeks, and  students 
work fulltime to finish their project assignment. 
The topics for the projects are announced at 
the beginning of each semester. Students cast 
their preferences for the projects. The project 
assignment and the group composition will be 
announced shortly afterwards, based on student 
preference in so far as possible. During the 
semester, each group will provide a research and 
business plan/report (end of period 1 or period 4), 
give an interim presentation on the progress, their 
approach and schedule for the remaining time 
(during period 2 or period 5), a social-media post 
(end of period 2 or period 5), and a final product 
together with report and public oral presentation.  
Each of these milestones is assessed by the 
supervisor/examiner. The assessment  will - in 
principle - yield the same mark for all the group 
members. However, there can be diversification, 
see the Education and Examination Regulations 
(EER) and the Rules and Regulations (R&R).

Choose your own curriculum 

During the first semester of the second year of 
the master’s programme, you can choose your 
own curriculum from available options, enabling 
you to pursue your personal interests. During this 
semester, you can obtain 30 credits by choosing 
elective courses of the other master’s programmes 
offered at the Department of Advanced Computing 
Sciences (i.e., AI or DSDM). In addition, you can also:

•	 Take a combination of elective courses from the 
master’s AI or DSDM and courses at another 
master’s programme of Maastricht University;

•	 Participate in a research project (a research 
internship) of the academic staff of the 
Department of Advanced Computing Sciences 
or at another research university; 

•	 Participate in an internship at a company;
•	 Follow an exchange programme at one of our 

partner universities abroad.

The final stage of your master’s programme, 
during the second semester of the second year, 
is reserved for conducting and writing your 
master’s thesis that counts for 30 credits. The 
thesis is produced individually and is the result of 
a master research project on a topic that you will 
be working on under the supervision of one of the 
academic staff members of the programme. In the 
preliminary phase, the emphasis is on self-study, 
subject determination, approaching a supervisor, 
planning, and some preliminary research. After 
approval of the thesis research plan by the Board of 
Examiners, the actual research starts. In this phase, 
the student carries out his/her own research. 
The senior researcher that acts as the supervisor 
of this research process will guide the student 
during a series of regular appointments. The final 
phase is used to accomplish, i.e. write, the master’s 
thesis. The master’s thesis project is completed 
by an individual presentation and discussion of 
the results at the department. Assessment will be 
based on the research, the thesis itself, the process, 
the software and the presentation and discussion 
of this thesis (i.e., public defence).

Note that all individual curriculum choices are 
guided by our student counsellors and are subject 
to approval by the Board of Examiners.
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1.2.4 Project Centred Learning

All of our bachelor’s and master’s programmes 
employ project centered learning (PCL), a variant of 
Maastricht University’s signature problem-based 
learning. The PCL educational model is small-scale 
and student-oriented. You work in small groups 
on two complex and challenging projects per year 
(amounting to one per semester). These projects 
last around five months each and run parallel 
to courses, which follow a lecture- and tutorial-
based setup. The level of the projects, and the 
products students need to deliver, matches the 
students’ study progress by requiring knowledge 
obtained from coursework. In addition to technical 
skill development, this educational model trains 
employability skills such as teamwork, project 
planning, documenting, and presenting.

We base projects on real-life research and/or 
societal challenges provided by our staff and by 
companies. This gives our students the opportunity 
to gain invaluable experience by applying the 
learned knowledge to finding solutions to real-
world problems. Together with fellow students, 
you research on what existing approaches can be 
adapted, and design and evaluate new approaches 
for the problem at hand. At the end of each project, 
you deliver a functional product and present your 
findings to your fellow students, the teachers and/
or the client. 

Project Centered Learning has advantages:

•	 from the beginning you find out what 
teamwork means 

•	 you learn project-related skills in a natural way 
•	 you will be continuously placed in an active role
•	 you will be able to match theory with its 

applications 
•	 PCL increases the student’s motivation 

Projects for instance require students to design a 
quadcopter platform for an autonomous swarm, 
to detect fraud behavior in bank transactions, to 
optimize timetables, to model human decision 
process from intercranial EEG, to automate the 
recognition of facial expressions, or to design and 
implement a traffic simulator.

1.2.5 Shortened Academic Year pilot at FSE 

Starting September 1st 2024, the Faculty of Science 
and Engineering (FSE) will participate in the UM 
pilot for the Shortened Academic Year. This pilot 
shortens the Academic Year by about two weeks 
in the summer and one week before Christmas as 
compared to the standard UM frame schedule. In 
this way, the length of our academic year becomes 
more closely aligned with international practice. 
This gives students dedicated time to further 
explore own research, work on projects, or use 
some extra rest at the end of each semester.

The pilot is implemented by all FSE bachelor and 
masters programmes and remains based on the 
UM’s 6-period structure. The biggest change in the 
pilot is a longer three-week Christmas break, and 
the summer break that starts two to three weeks 
earlier. The Business Engineering programme 
will not join the pilot at this moment due to the 
entwinement with the School of Business and 
Economics. The pilot will run for at least the next 
three academic years. At the end of the first year 
of the pilot in September 2025, a first survey will 
be conducted to evaluate the outcomes of the 
shortened academic year. 

1.3	 Study Abroad 

In the two bachelors Data Science and Artificial 
Intelligence and Computer Science and the two 
masters Data Science for Decision Making and 
Artificial Intelligence we have one of the highest 
ratios of international students. More than 75% 
of the scientific staff and 75% of the students are 
non-Dutch, giving rise to an international study 
environment. Additionally, we host a number of 
international exchange students each year and 
offer our own students a number of opportunities 
for international experiences themselves. For 
example, we offer students the opportunity to 
study abroad for a semester during the elective 
semester. For this purpose, we collaborate with 
well-established partner universities.  

For bachelor students there is an option to 
participate in an international study abroad 
programme during the fifth (elective) semester of 
the bachelor’s programme. For master students 
there is an option to participate in an international 
study abroad during the third (elective) semester of 
the master’s programmes.
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Please note that for students entering the Master 
programmes during the February intake, fewer 
universities may be available for study abroad. 
More documentation and information about the 
participating exchange partner universities is 
available on Canvas under the “Going Abroad” 
section (see the application form). Also, here you 
can find the  Study Abroad Guide.
For additional information, you can contact the 
international relations officer or your study advisor.

1.4	 Degree 

A successful conclusion of the bachelor’s 
programme will provide you with a bachelor’s 
certificate according to Dutch law, that is, a 
‘Bachelor of Science’. A successful conclusion of 
a master’s programme will provide you with a 
master’s certificate according to Dutch law, that is, 
a ‘Master of Science’. 

1.5	 Study Feasibility and Quality 
Assurance 

We strive for continuous improvement of the 
quality and feasibility of our study programmes. 
Student evaluations of each course help us in 
maintaining a high standard of educational quality 
and keeping the study programmes feasible. The 
study programme’s feasibility means that a student 
with an appropriate background should be able to 
finish the study within the set number of years. 

To maintain this standard, the quality assurance 
officer collects information about teaching, 
learning and assessment at the end of each 
period. The quality assurance officer then reports 
the outcomes of the student evaluations to the 
Education Programme Committee (EPC) of the 
respective bachelor’s or master’s programme. 
The EPC consists of representatives of staff and 
students  (6 staff representatives and five student 
representatives -- two students of Bachelor DSAI, 
one student of Bachelor CS, and two master 
students, one for each Master’s programme). If 
the outcomes are unsatisfactory, the EPC will take 
action to improve the quality of a specific course 
(or project) or of the study as a whole. Therefore, 
student feedback for courses is essential in pointing 
out strong aspects and aspects for improvement of 
all educational activities.

As a student in one of our bachelor’s or master’s 
programmes, you are encouraged to give your 
opinion about each course, as it may help improve 
that course. Moreover, future students may benefit 
from the results and comments of your evaluation 
just as you may benefit from course evaluations of 
fellow students. Also, if you are interested, you are 
encouraged to become a student member of the 
EPC.

1.6	 Courses at other Faculties or 
universities 

If a student from one of our bachelor’s or master’s 
programmes would like to participate in courses 
at other programmes of Maastricht University 
or other universities, approval from the Board of 
Examiners is needed in advance. Students should 
consider for themselves what the implications are 
of the mixed schedules at FSE and other faculties 
as a result of the Shortened Academic Year pilot 
at FSE. The student counsellors will upload further 
information on Canvas in November 2024.
A special position among electives from outside the 
bachelor’s programme is the Educational Minor. 
The Educational Minor leads to a limited second-
degree teaching qualification. Upon successful 
completion of the minor, you are qualified to teach 
in the first, second and third year of VWO, HAVO 
and VMBO-tl (MAVO) level in the Netherlands. 
Students in the BSc Data Science and Artificial 
Intelligence can - upon successful completion - 
acquire a teaching qualification for the main 
subject of Mathematics. The Educational Minor 
is  organised in close cooperation with the Fontys 
Leraren Opleiding (Teacher Training) in Sittard 
(FLOS) and Tilburg (FLOT). The language of the 
Educational Minor is Dutch. 

The programme contains several pedagogical-
didactic courses in semester 5, along with 
education aimed at teaching methodology. There 
is also a mandatory practical internship, in the 
form of work placements, which is spread out 
over semesters 5 and 6. The education meetings 
mostly take place at UM and occasionally at the 
Fontys Leraren Opleiding in Sittard. The practical 
internship will be done at several secondary schools 
in the whole province of Limburg and will continue 
until the end of semester 6. During the practical 
internship, the student spends one day a week at 
a secondary school for the course of a full school 
year. In this way, the necessary teaching experience 
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is obtained. Knowledge and practice are closely 
connected in the Educational Minor. 

Successful completion of the educational minor 
yields 35 ECTS of which five are extracurricular. This 
means that these 5 ECTS cannot be used to replace 
any other components of the original bachelor 
program. Students in the BSc Data Science and 
Artificial Intelligence who wish to participate in 
the program should have accumulated, by the end 
of their second year, all 60 ECTS from the first-year 
components and at least 52 ECTS from the second 
year components. Prior to their enrolment in this 
minor, a motivated request for participation has to 
be submitted in Dutch to the Board of Examiners 
dacs-boe). Enrolment is dependent on selection and 
prior permission of the Board of Examiners.

If you have any questions regarding the contents of 
this educational minor, then please contact  
Dr. Stefan Maubach  
(s.maubach@maastrichtuniversity.nl).

1.7	 Department of Advanced Computing 
Sciences Honours Programmes Bachelor 

The Department of Advanced Computing Sciences 
offers its talented and top-performing bachelor’s 
students the possibility to participate in our 
Honours Programme. This programme offers of 
two different tracks: a research track (MaRBLe 
2.0) and a practical track (CS@Work or KE@Work, 
depending on the bachelor you are enrolled in, CS 
or DSAI respectively).  If you successfully complete 
an honours programme track, this will be certified 
on an honour’s diploma supplement.

MaRBle 2.0 – Research Track
In MaRBle 2.0, you get the opportunity to work 
on a state-of-the-art research project. Work will 
be organized in a similar way as in professional 
research institutes where participants work 
together as individual experts on a team project. 
Each student specializes in a task, gets assigned a 
team role and receives a self-contained research 
project. Together they work towards a common 
demonstration where individual research projects 
integrate towards a journal publication. For the 
individual subprojects, each student receives an 
individual supervisor from DACS. 

For more information on MaRBLe 2.0, please 
contact the MaRBLe 2.0 coordinator, Rachel Cavil,  
via rachel.cavill@maastrichtuniversity.nl.

KE@Work – Practical Track

Students admitted to the KE@Work track (Knowl-
edge Engineering at Work) are placed at a company 
or organisation through a careful selection and 
matching process. Over the full second and third 
year of the bachelor program, KE@Work students 
spend 50% of the time in class and 50% at the com-
pany, where they work on solving real world chal-
lenges and complex business problems using an 
academic approach, under supervision of dedicated 
business and university supervisors.  For more in-
formation, please contact the coordinator via 
kework@maastrichtuniversity.nl 

CS@Work – Practical Track
Students admitted to the CS@Work track 
(Computer Science at Work) are placed at a 
company or organisation through a careful 
selection process based on the elective choices 
made by the student during the second year. Over 
the span of the third year of the bachelor program, 
starting with three weeks of the summer break 
between the second and third year, CS@Work 
students spend 40% of the time in class and 60% 
at the company, where they work as part of a 
development team, solving real world challenges 
challenges and complex business problems using 
an academic approach, under supervision of 
dedicated business and university supervisors. For 
more information, please contact the coordinator 
via cswork@maastrichtuniversity.nl.

Eligibility Requirements
Eligibility requirements for the honours programmes 
entail that students:
	· Have passed all courses/components of their 

Bachelor’s programme at first opportunity;
	· Are maintaining a GPA of at least 7.5 up to the 

point of selection;
	· Have not been convicted of fraud and have not 

been reprimanded for a violation of house rules 
or code of conduct.

You can find the exact criteria and leniency in the 
Rules and Regulations. 
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1.8	 Regulations

There are a number of Rules and Regulations that 
we expect you to be familiar with. An overview of 
the regulations can be found here  

For examination, The Education and Examination 
Regulations (EER), the Rules and Regulations (RR) 
and the Rules of Procedure for Examination are of 
particular interest: 
  
https://intranet.maastrichtuniversity.nl/en/
dacs-students/exams-rules-and-regulations/
examination
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2	 Bachelors

2.1 �Curriculum of the first year of the Bachelor Programme Data Science  
and Artificial Intelligence 

In order to learn how the transformation of raw data into useful information and knowledge is 
achieved, and how this transformation can be automated with the help of artificial intelligence, 
a thorough basic knowledge of specific mathematics and computer science subjects is required. 
This means that the first year is largely filled with mathematics and computer science subjects. 
Additionally, you will also follow courses on topics that help the understanding and broadening 
of the fields of Data Science and Artificial Intelligence, such as Computational & Cognitive 
Neuroscience. 

The year is divided into four periods of seven weeks with three courses each, and two periods of 
three weeks during which you will work on a project. Each project is preceded by partial project 
assignments during the other periods. The week schedule works with two-hour clusters. In the 
overview below, the courses are indicated, as well as the study load in credits (ECTS). One ECTS credit 
stands for about 28 hours of study time (lectures, meetings and self-study). Besides the lectures that 
are given on the subjects, there will also be practical and skills training.

Year 1 ECTS

Period 1.1 Introduction to Data Science and Artificial Intelligence (KEN1110)
Procedural Programming  (KEN1120)
Discrete Mathematics (KEN1130)
Project 1-1 (KEN1300)

4
4
4

Period 1.2 Objects in Programming (KEN1220)
Calculus (KEN1440)
Logic (KEN 1530)
Project 1-1 (KEN1300) 

4
4
4

Period 1.3 Project 1-1 (KEN1300) 6

Period 1.4 Linear Algebra (KEN1410)
Data Structures and Algorithms (KEN1420)
Principles of Data Science (KEN1435)
Project 1-2 (KEN1600)	

4
4
4

Period 1.5 Computational and Cognitive Neuroscience (KEN1210)
Software Engineering (KEN1520)
Numerical Methods (KEN1540)
Project 1-2 (KEN1600) 

4
4
4

Period 1.6 Project 1-2 (KEN1600) 6

(*) Project 1-1 will start in period 1.1 and will run until period 1.3; Project 1-2 will start in period 1.4 and will run until period 1.6. 
The credits for the projects will become available at the end of period 1.3 and period 1.6, respectively. Please see the course 
description section Project 1-1 and Project 1-2 for more details on the project curriculum. For each period, we will give a short 
explanation of the various parts. Before the start of each period, the students will receive detailed information about the 
content, the study material, the teaching form, the schedule, and the examination method.
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Period 1.1

Introduction to Data Science and Artificial Intelligence (KEN1110) 

Examiner: Dr. Rachel Cavill, Dr. Pietro Bonizzi, and Prof. dr. Anna Wilbik

Desired Prior Knowledge: The course appears as desired prior knowledge for the courses Reasoning 
Techniques and Theoretical Computer Science.

Prerequisites: None.

Course description: The course Introduction to Data Science and Artificial Intelligence offers a 
comprehensive overview of the core topics in Data Science and Artificial Intelligence, both from a 
mathematical and from a computational perspective. Particular emphasis is put on the basic classes 
of techniques and methods, the theoretical underpinnings of data science and computational 
intelligence, and some example application domains of data science and artificial intelligence. 
As such, the course provides an overview of many topics that are addressed in much more detail 
throughout the Bachelor’s Data Science and Artificial Intelligence programme.

Knowledge and understanding: After successful completion of the course, students will be able to 
recognise what real world problems require the use of data science, and approach their solution by 
using a data science process, namely: explore the data, model the data, and perform simulations if 
required. Moreover, they will exhibit knowledge in the basic concepts of artificial intelligence, such 
as agents, search, artificial intelligence, decision trees. 

Applying knowledge and understanding: Students learn to recognise applications of data science 
and artificial intelligence in different domains and apply the basic techniques they have learnt from 
both.

Making judgements: Upon completion of the course, students are able to recognise the relevant 
domains of data science and artificial intelligence when confronted with data science and artificial 
intelligence problems.

Communication: Students are able to explain the process they used to generate results and 
communicate the meaning of those results in context.

Learning skills: Students will be able to recognise small-scale data science problems and 
autonomously and critically reflect upon the appropriateness of data science and artificial 
intelligence methods for tackling those, and propose a primary solution.

Study material: Material will be provided during the course. 

Recommended literature: 
•	 S. Russell and P. Norvig (2010): Artificial Intelligence, A Modern Approach. Third edition, Pearson 

Education, ISBN 978-0-13-207148-2.
•	 C.D. Manning, P. Raghavan and H. Schütze (2008) Introduction to Information Retrieval. 

Cambridge University Press. ISBN 0521865719

Exam: There will be a closed book written exam at the end of the course.

ECTS: 4
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Procedural Programming  (KEN1120) 

Coordinator: Dr. Enrique Hortal

Examiners: Dr. Enrique Hortal & Charis Kouzinopoulis

Desired prior knowledge: None. 

Prerequisites: None. 

Description: The course provides the basics of computer science and computer programming. 
After a short introduction to computer organization, the principles of programming are 
presented. The main topics of the course are: data types, variables, methods, parameters, decision 
structures, iteration, arrays, recursion and a branching application (related to the semester 
project). Programming skills will be acquired during practical sessions using the object-oriented 
programming language Java.

Knowledge and understanding: The course offers preliminary methodological and theoretical 
bases for studying and applying computers and computer programming on which the rest of the 
curriculum builds.

Applying knowledge and understanding: Whenever a computer system or a programming system 
has to be designed and implemented the knowledge and insights acquired during the course can be 
used and applied.

Making judgements: After successful completion of the course, students will be able to judge the 
quality and correctness of simple non-object-oriented programs.

Communication: The skills acquired during the course will enable students to communicate about 
standard programming constructs and algorithmic basics.

Learning skills: After successful completion of the course, students will be able to formalize, analyse 
and program solutions to simple software problems.

Study material: Lecture slides, example code and multimedia material that are made available 
before and after each lecture. 

Assessment: Closed-book written exam (90%) + Assignments (10%)

Recommended literature: H. Schildt, Java: A Beginner’s Guide, Eighth Edition, ISBN: 1260440214, 
McGraw-Hill Education

Additional literature: C. Horstmann (2016). Java Concepts (8th Edition). John Wiley & Sons, New 
York, ISBN: 978-1-1190-5645-4 or C.Horstmann (2012). Big Java Late Objects. John Wiley & Sons, 
New York, ISBN 978-1-1180-8788-6

ECTS: 4
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Discrete Mathematics (KEN1130)

Examiner: Dr. Marieke Musegaas, Dr. Otti D’Huys, and Dr. Stefan Maubach

Desired Prior Knowledge: None.

Prerequisites: None. 

Description: In this course, we build a mathematical framework that is based on logic and reason. 
The main objective of the course is to make students familiar with the language of mathematics. 
Students will learn how to make sound arguments and to detect where and why certain arguments 
go wrong. For this purpose, we will discuss the basic principles of logic and, closely related, the basic 
types of mathematical proofs. In doing so, we will encounter numbers such as integers, natural 
numbers and real numbers and we shall examine what makes these numbers special. After that, we 
will use basic logic to discuss, among other things, the following mathematical concepts: infinity, 
sets, relations, functions, permutations and combinations. Our fundamental tool in all of this is plain 
common sense. You really do not need your toolbox of mathematical formulas learned in previous 
studies and neither do you need a calculator. Pen and paper are the basic instruments needed. 
After completing each topic, exercises will be provided to be completed in class or at home, since 
mathematics is mainly learned by practising repeatedly.

Knowledge and understanding: Students will be able to read, interpret and manipulate basic 
mathematical terminology (propositional logic, quantifiers, set theory, relations, functions, 
and combinatorics). Students will also be able to read and interpret several different types of 
mathematical proofs and identify whether a purported proof is mathematically sound.

Applying knowledge and understanding: Upon completion of the course students will know how 
to read, interpret, write and manipulate rigorous mathematical statements using propositional 
logic, quantifiers, set theory, relations, functions and combinatorics. Students will be able to select, 
from a range of mathematical tools, which is appropriate to prove or disprove a given mathematical 
statement, and apply the chosen tools, rigorously and clearly in order to achieve the desired goal.

Making judgements: Students will be able to distinguish between mathematically sound and 
unsound statements and defend the rigour of their own mathematical arguments.

Communication: Students will be able to write clear, rigorous and explicit mathematical arguments 
using standardized mathematical terminology and such that each step in the argument is a logical 
consequence of earlier steps.

Learning skills: By the end of the course, students will be able to autonomously and critically reflect 
upon the mathematical correctness of their own arguments.

Study material: A. Chetwynd & P. Diggle: Discrete Mathematics. Butterworth- Heinemann, Oxford, 
ISBN 0 340 61047 6. Lecture notes will also be provided.

Recommended literature: None

Exam: Closed book written exam.

ECTS: 4

17 - Student Handbook



Period 1.2

Objects in Programming (KEN1220)

Coordinator: Dr. Thomas Bitterman

Examiners: Dr. Thomas Bitterman, Dr. Evgueni Smirnov & Theodor Schnitzler

Tutors: Prianikov, Nikola; Barta, Lázár; Doss, Heinz; Bams, Guillaume; Balan, Alexandra; Goldie, 
Samuel; Buiter Sanchez, Arantxa; Gójska, Maja; Timmermans, Derrick; Straka, Filip; Goffinet, Arthur

Desired prior knowledge: Procedural Programming

Prerequisites: None.

Description: This course is a follow-up to the course Procedural Programming. It teaches object-
oriented programming in Java. The main topics covered in the course are objects and classes, 
interfaces and polymorphism, event handling, inheritance, graphic user interfaces, exception 
handling, and streams.

Knowledge and understanding: After successful completion of the course, students will be able to 
explain the methodological and theoretical principles of object-oriented programming.

Applying knowledge and understanding: Students will be able to implement basic object-oriented 
computer programs. They will be able to design and describe simple object-oriented computer 
systems.

Making judgements: Students will be able to judge the quality and correctness of simple object-
oriented programs.

Communication: Students will be able to communicate about object-oriented programming 
constructs and algorithmic basics.

Learning skills: Students will be able to recognize their own lack of knowledge and understanding 
and take appropriate action such as consulting additional material or other sources of help.

Study material: Course notes, slides, and other information made available.

Assessment: Written exam (80%) + practical assignments (20%).

Recommended literature: C. Horstmann (2016). Java Concepts (8th Edition). John Wiley & Sons, New 
York, ISBN: 978-1-1190-5645-4.  
C. Horstmann (2012). Big Java Late Objects. John Wiley & Sons, New York, ISBN 978-1-1180-8788-6

ECTS: 4
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Calculus (KEN1440) 

Examiner: Dr. Otti D’Huys & Dr. Gijs Schoenmakers

Prerequisites: None.

Description: The following subjects will be discussed in Calculus: limits and continuity, differential 
calculus, integral calculus, and an introduction to sequences and series and multivariable calculus. 
In addition to the main facts and concepts, problem-solving strategies will be discussed. Both the 
intuition behind the concepts and their rigorous definitions will be presented along with simple 
examples of formal mathematical proofs.

Knowledge and understanding: Student can define, write and explain key facts and concepts 
involving limits and continuity, can interpret and solve differential calculus, integral calculus, and 
understand the basics of multivariable calculus.

Applying knowledge and understanding: Students are able to solve problems applying the concepts 
learned in the course, using standard problem-solving strategies.

Making judgements: Students are able to analyse a simple problem within the course content 
and justify the solution methodology they choose. They can summarize this methodology 
mathematically.

Communication: Students are able to explain their solution strategy in written form and defend 
their solution strategy in discussion with others

Learning skills: After successful completion of the course the students will be able both to solve 
standard problems (constructing graphs of functions, finding extrema of functions, computing 
limits, summing infinite series etc.) and to apply their knowledge in solving and analysing more 
complex problems (e.g. in analysis of numerical algorithms).

Study material: Calculus, a complete course, any edition, by R.A. Adams, Addison Wesley Longman 
and materials provided during the lectures.

Exam: Intermediate bonus assignments and a final written exam.

ECTS: 4
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Logic (KEN1530) 

Coordinators: Dr. Tjitze Rienstra & Dr. Stefan Maubach

Examiners: Dr. Tjitze Rienstra, Dr. Stefan Maubach & Dr. Nico Roos

Description: This course deals with three logical systems, namely propositional logic, first-order 
predicate logic and dynamic logic. The course covers notation systems, syntax and semantics, valid 
consequences, deduction, semantic tableaux, and proof systems.

Knowledge and understanding: Students need to get accustomed to the fundamental concepts 
of mathematical logical systems (propositional logic and predicate logic) to able to describe 
information in a logical framework and to reason and prove correctly. Students will get accustomed 
to the basic concepts of some advanced logical systems (dynamic logic and Hoare logic).

Applying knowledge and understanding: Student will apply the reasoning and proof methods 
learned to small-scale problems and some more complex situations.

Making judgements: Students will learn to judge how to reason correctly using mathematical 
proofs and how to judge which logical system is suitable to solve the problem at hand.

Communication: The chosen syntax of the logical language used must be easily understandable by 
peers and other experts the logical proofs given must be correct, concise and easily understandable.

Learning skills: Having learned basic logical concepts and reasoning techniques the students are 
able to apply them to larger-scale problems.

Study material: Johan van Benthem, Hans van Ditmarsch, Jan van Eijck, Jan Jaspars, Logic in Action. 
Edition of February 2014 or later. This is a freely available e-book. Check your Canvas for the link.

Exam: Written exam.

ECTS: 4

Project 1-1 (KEN1300)

Coordinator: Dr. ir. Martijn Boussé

Description: Students work on a project assignment in small groups of six to seven students. The 
group composition stays the same for the whole project and is announced shortly before the 
project opening in period 1.1. The students are guided through the project by tutors (for project 
management) and mediators (for team dynamics). The project assignment is divided into three 
subtasks (one per period) and is strongly related to the course content from period 1.1 and 1.2. In 
period 1.1, after receiving the assignment for the whole project at the end of week 4, the students 
can start working on the project, and work full-time on the project in week 8 after the exams. In 
period 1.2, the students continue working on the projects in parallel to the other courses of that 
period. In period 1.3, the students work two weeks full-time on the project. The students meet their 
tutor about 3 times per period. A plenary Q&A with the examiners will be organized in period 1.1 
and 1.2. The students will engage in several feedback and graded moments with the examiners 
during the project.

Knowledge and understanding: Interpret constraint-satisfaction problems arising in practice and 
translate this to discrete-mathematical algorithmic models capable of solving the problem. Gain 
insight into practical use of basic software design and development principles. Recognise and relate 
user-computer interactions to concepts from graphics and user-interface frameworks. Strengthen 
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knowledge of basic algorithms and methods for efficiently solving constraint-satisfaction problems 
arising in applied mathematics (especially: discrete mathematics) and artificial intelligence.

Applying knowledge and understanding: Design an answer strategy for scientific questions using 
analytical thinking and logical reasoning. Translate discrete-mathematical algorithmic models to 
software code. Implement software to efficiently solve constraint-satisfaction problems arising 
in applied mathematics (especially: discrete mathematics) and artificial intelligence by finding, 
designing and applying appropriate algorithms. Formulate computational experiments, and analyse 
and interpret the results. Apply basic design and development principles in the construction of 
software systems. Use existing software application frameworks for graphics and user interfaces. 
Use tools for software project management such as version control systems and issue trackers. 
Identify project goals, deliverables, and constraints. Use simple project management tools. Work 
in a team such that the workload is balanced. Plan teamwork by setting deadlines and distributing 
tasks.

Making judgements: Evaluate different mathematical and computational models with respect to 
their suitability, efficiency and correctness for a specific task. Elicit and evaluate relevant scientific 
background information. Evaluate the group’s progress during the project.

Communication: Give a clear and well-constructed presentation, including a demonstration of the 
product, and with appropriate use of illustrations and/or videos. Offer and respond to questions on 
and constructive criticism of presentations. Write a project report according to the structure of an 
academic article. Submit arguments in exact sciences, with appropriate use of formulae and figures. 
Cite published sources in the project report according to the academic guidelines. Structurally 
inform stakeholders on project progress. Effectively communicate with project group members 
about task division, planning and project deadlines. Effectively communicate with group members 
by listening to others’ ideas; be contactable and include others in the discussion. Cooperate in a 
group to reach a consensus view. Give constructive feedback to team members. Communicate in 
the English language.

Learning skills: Reflect on one’s own academic abilities and functioning in a team.

Study material: Project manual project 1-1, Maastricht University.

Assessment: The final grade will be composed of a project grade and a skill class grade. The project 
grades consists of several components such as project management, deliverables, presentation, and 
peer feedback. The skill class grade will depend on the total number of passed skill classes. (NG for 
the project is given if a student failed more than 2 skill classes).
Students not complying with attendance and participation requirements during the project 
meetings or examination moments may not be allowed to attend examination moments or may 
receive an NG.

Skill classes: Students will engage with a series of skill classes that prepare and support them for 
project work such as project management, team dynamics, and communication.

ECTS: 6
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Period 1.4

Linear Algebra (KEN1410) 

Examiner: Dr. Marieke Musegaas, dr. ir. Philippe Dreesen, & dr. Steve Chaplick.

Desired Prior Knowledge: None. 

Prerequisites: None.

Course description: This course introduces the fundamental concepts of linear algebra, and 
examines them from both an algebraic and a geometric point of view. First, we address what 
can be recognized without doubt as the most frequently occurring mathematical problem in 
practical applications: how to solve a system of linear equations. Then we discuss linear functions 
and mappings, which can be studied naturally from a geometric point of view. Vectors spaces are 
then introduced as a common framework that brings all themes together. Next, we shift from the 
geometric point of view to the dynamic perspective, where the focus is on the effects of iterations 
(i.e., the repeated application of a linear mapping). This involves a basic theory of eigenvalues 
and eigenvectors, which have many applications in various branches of science as for instance in 
problems involving dynamics and stability, in control theory, and in optimization problems found 
in data science. Key concepts in the course are vectors, matrices, systems of linear equations, 
eigenvalues, eigenvectors, linear transformations, and orthogonality. The software package Matlab 
is introduced in the accompanying computer classes, where emphasis is put on the application of 
linear algebra to solve real world problems.  

Knowledge and understanding: Students are able to recognize and explain the fundamental 
concepts of Linear Algebra: systems of linear equations, vectors and vector spaces, basis and 
coordinates, matrices and matrix-vector computations, linearity and orthogonality, linear 
independence, rank, fundamental spaces (row space, column space, and null space), determinants 
and invertibility, eigenvalues and Eigen spaces, diagonalization.

Applying knowledge and understanding: Students are able to analyse a linear algebra problem from 
both an algebraic and a geometrical point of view. Students can solve systems of linear equations, 
compute determinants and rank, compute eigenvalues and Eigen spaces, make use of complex 
numbers, diagonalizable matrices, and perform change of coordinates. 

Making judgements: Students are able to look at the same problem from different angles and to 
switch their point of view (from geometric to algebraic and vice versa).

Communication: Students are able to motivate both from an algebraic and a geometric point of 
view the solution set of a system of linear equations, the linear independence and orthogonality of a 
set of vectors, the linear transformation between two coordinate systems, the fundamental spaces 
associated with a matrix, the invertibility of a matrix, and the diagonalization of a matrix in terms of 
the properties of its eigenvalues and eigenvectors.

Learning skills: Students have acquired the skills to autonomously recognize elements of practical 
problems, which can be addressed and solved with linear algebra, and use Matlab to solve larger 
scale problems.

Study material: David C. Lay, Linear algebra and its applications, 6th ed., Pearson, ISBN: 978-1-292-
35121-6.

Recommended literature: None.

Exam: Closed book written exam

ECTS: 4
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Data Structures and Algorithms (KEN1420)

Coordinator: Tom Pepels, M.Sc.

Examiners: Dr. Francesco Barile, Tom Pepels, M.Sc. & Dr. Bastian Küppers

Tutor(s): TBA

Desired prior knowledge: Programming in Java, Procedural Programming (KEN1120), Objects in 
Programming (KEN1220)

Prerequisites: None.

Description: The Data Structures and Algorithms course introduces the students to the design and 
application of data structures and algorithms. Abstract datatypes will be used as a central topic in 
this course. Together with the basic abstract data types such as trees, lists, and graphs, the associated 
algorithms and their complexity are discussed. The differences between the best, expected, and worst 
behaviour of an algorithm is explained. Supported by the concepts of complexity bounds and big O 
notation complexity is illustrated on several algorithms such as search, and string & graph algorithms. 
After completing this course, students will be able to determine the appropriate data structures and 
algorithms for simple problems.

Knowledge and understanding: Students will acquire a thorough understanding of both fundamental 
and complex data structures—ranging from arrays and linked lists to trees and graphs—alongside 
the principles of algorithm design, such as recursion, sorting, and graph algorithms. The curriculum 
emphasizes the importance of complexity analysis, teaching students to evaluate algorithm 
performance using Big O notation and other measures. Students will explore various algorithmic 
strategies, including dynamic programming and greedy algorithms, to solve computational problems 
efficiently. 

Applying knowledge and understanding: Students will directly apply theoretical concepts through 
hands-on coding tutorials, designing and implementing algorithms to address specific problems. The 
primary learning goals include mastering the selection and application of appropriate data structures 
for optimizing software performance, conducting complexity analysis to evaluate and improve 
algorithm efficiency, and developing solutions for software development challenges. This approach 
aims to enhance students’ problem-solving skills and prepare them for advanced computational tasks 
in their academic and professional futures. By the end of this course section, students will have gained 
experience in applying theoretical knowledge to practical scenarios, demonstrating their ability to 
navigate complex problems and develop efficient, effective solutions.

Making judgements: Students are tasked with developing the ability to critically assess the efficiency 
and effectiveness of different data structures and algorithms in solving computing problems. This 
involves comparing various algorithmic approaches based on their time and space complexities, 
understanding the trade-offs involved in algorithm selection, and justifying the choice of specific data 
structures for given scenarios.

Communication: Students will be able to explain how data structures and algorithms are to be included 
in program designs.

Learning skills: Students are encouraged to develop autonomous learning habits and critical thinking 
abilities. The focus is on fostering the capacity to independently acquire new computational techniques, 
adapt to evolving programming paradigms, and apply problem-solving strategies in unfamiliar contexts.

Study material: The course follows the Algorithms Fourth Edition book. Next to the book, weekly l 
ecture videos and short introduction videos to key topics are provided.

Exam: ‘Closed Book’ written exam

Recommended literature: Sedgewick and Wayne (2011) Algorithms Fourth Edition. Addison Wesley. 
ISBN: 978-0321573513 

Additional literature: A Y Bhargava (2016). Grokking Algorithms: An Illustrated Guide for  
Programmers and Other Curious People. Manning. ISBN: 978-1617292231

ECTS: 4
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Principles of Data Science (KEN1435) 

Examiners: dr.ir. Marijn ten Thij & Dr. Anirudh Wodeyar

Desired prior knowledge: Procedural Programming

Prerequisites: None.

Description: Nowadays data science is at the core of modern society. We collect large amounts of 
data with the goal to make better decisions. We need to make sense of the data and leverage it in 
effective ways. 

In this course, we will start with where data comes from—controlled experiments and observational 
studies. We will look at potential biases that can affect conclusions that we make from data. We 
will focus on what kind of causal statement one can draw based on data coming from experiments 
versus observational studies. 

We will then summarize and visualize data using histograms and scatter plots. As we will see, there 
are some interesting recurring patterns when we summarize data. For example, the distribution of 
the average follows the bell shape curve. We will also consider deviations from the bell shape curve 
in case of outliers, and how to deal with real world and possible “unclean” data. Scatter plots will 
help us study the regression line and correlations. 

This course will build the foundation for subsequent courses: probability and statistics, simulation 
and statistical analysis, and machine learning. You will learn how to convert data into tables and use 
them for subsequent analysis and plotting. We will focus on the principles of modern reproducible 
science, that is, to build analysis workflows that can easily be understood and re-run by others. We 
will learn how to keep track of analysis decisions and parameter choices. We will summarize all the 
uncertainties in an accessible way and see that this is crucial for effective decision making in the 
modern world. 

During the labs, we will learn Python—one of the main programming languages used in data 
science— and how to use it to write analysis reports using literate programming—mixing code, 
plots, and narrative in the same document. We will analyze and visualize real datasets.

Knowledge and understanding: Students learn to organize, analyze, and visualize data. They 
understand what type of distribution to expect after summarizing the data.

Applying knowledge and understanding: Students analyze real datasets. They apply their 
knowledge about summaries of the data—and other tools in data science—and determine where 
they can be appropriately applied. They translate their understanding into conclusions for domain 
experts. Students develop skills to generalize data analyses to unseen contexts.

Making judgements: Students decide the limits on what can be learned from data. They judge the 
data based on the design of the experiment and the final goal of the analysis. They also predict the 
consequences of data misuse when making causal claims.

Communication: Students communicate their findings in written analysis reports. They write 
reports in Jupyter notebooks and compile them to html reports, so that they are accessible for 
domain experts.

Learning skills: Students develop skills to turn an abstract question into an actionable decision to 
gain insights.
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Study material: Statistics (fourth edition) by Freedman, Pisani, and Purves, ISBN 9780393929720. 
Additional selected material from data science textbooks and other resources.

Assessment: 20% homework assignments and 80% written final exam

Recommended literature: None

ECTS: 4

Period 1.5

Computational and Cognitive Neuroscience (KEN1210) 

Examiner: Dr. Alard Roebroeck and Dr. Michael Capalbo

Desired Prior Knowledge: None

Prerequisites: None. 

Description: The course Computational and Cognitive Neuroscience presents an overview of 
the core topics in cognitive and biological psychology. These topics include (human) perception, 
learning, memory, planning, problem solving, reasoning, language, speech, and action. Both the 
functional and neuroanatomical foundations of cognitive faculties are addressed. Several models 
of cognition and theories of brain function that are of relevance to knowledge engineering will be 
outlined. Several skills trainings will be given to train understanding in biological functioning of 
neuronal communication, and functioning of neural networks and genetic algorithms.

Knowledge and understanding: The student can recount the main points of  the domain of cognitive 
science
•	 The student can describe the main points of  the domain of cognitive science
•	 The student can explain the following (human) behaviours while using these points: perception, 

learning, memory, planning, problem solving, reasoning, language, speech, and action.
•	 The student can identify the computational aspects and computational applications of these 

fields

Applying knowledge and understanding:
This knowledge is applied in in two practical assignments in which the students are asked to create 
a genetic algorithm and a neural network

Making judgements: 
•	 Upon completion of the course, students are able to interpret data and literature about a subject 

in (or related to) the domain of cognitive and biological psychology.
•	 Using the data and literature, they can support judgements about the societal, scientific or 

ethical aspects of the subject.

Communication: 
Students are able to communicate ideas and solutions to an audience of non-experts and experts.

Learning skills: 
Students have acquired the skill to translate theoretical models into computational models.
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Study material: Material will be provided during the course.

Recommended literature: Sternberg, R.J. (1999). Cognitive psychology (latest edition). Fort Worth: 
Harcourt Brace. Kalat, J.W. (2007) 9th edition Biological psychology. Pacific Grove, California; London: 
Brooks Cole. Gazzaniga, M. (2009). Cognitive Neuroscience (third edition).

Exam: Written exam.

ECTS: 4

Software Engineering (KEN1520)

Examiners: Tom Pepels, M.Sc. & Dr. Bastian Küppers

Tutor(s): TBA

Desired prior knowledge: Programming in Java, Procedural Programming (KEN1120), Objects in 
Programming (KEN1220)

Prerequisites: None. 

Description: This course is designed to equip students with the foundational concepts and practices 
of software engineering, encompassing areas such as software design, management, testing, and 
maintenance.
Weekly sessions include a lecture complemented by a tutorial/problem-solving session, where 
students will engage in hands-on assignments. These activities aim to facilitate the application of 
class-taught concepts. In collaboration with a peer, students will undertake a small project tailored 
to highlight critical facets of software engineering.
Upon completion, it is anticipated that students will have acquired a comprehensive understanding 
of software engineering principles and practices, positioning them well to implement these skills in 
subsequent software development endeavors.

Knowledge and understanding: This course offers students an in-depth grasp of the key principles 
and methodologies in software engineering, including software design, development, testing, 
and maintenance. It covers the theoretical underpinnings of software engineering practices and 
introduces the core concepts needed to navigate the software development lifecycle effectively. 
Students will learn about various software architectures, programming paradigms, and the 
importance of quality assurance and software maintenance strategies.

Applying knowledge and understanding: Students will apply theoretical knowledge through 
practical assignments, collaborative projects, and problem-solving sessions. These activities are 
designed to reinforce the concepts learned in lectures, with a focus on real-world application. By 
engaging in hands-on tasks, students will develop the skills necessary to design, test, and maintain 
software systems, working both individually and as part of a team.

Making judgements: The course encourages students to critically evaluate different software 
engineering methodologies, tools, and practices. Students will learn to assess the appropriateness 
of various software development models for specific projects, make informed decisions regarding 
testing strategies, and determine the most effective maintenance approaches. This critical analysis 
aims to cultivate a nuanced understanding of how to navigate complex software engineering 
challenges.
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Communication: Students will learn to articulate complex software design concepts and project 
requirements clearly, both verbally and in writing. Collaborative projects and presentations will 
further enhance their ability to communicate technical information effectively to diverse audiences, 
including team members and non-technical stakeholders.

Learning skills: The course is designed to foster lifelong learning skills, preparing students to adapt 
to new technologies, methodologies, and changes in the software engineering field. Through self-
directed learning, reflective practice, and feedback incorporation, students will enhance their ability 
to independently acquire new knowledge and skills. This foundation will support their ongoing 
professional development and adaptability in the evolving landscape of software engineering.

Study material: Next to the recommended materials, weekly lecture videos and short introduction 
videos to key topics are provided.

Assessment: 
•	 Written “closed-book” exam at the end of the course worth 80% of the final grade. 
•	 During the course, students receive several graded assignments in the form of a project that 

count for 20% of the final grade. 
•	 Attending 6 out of 7 tutorial sessions rewards 0.5 bonus points toward the final grade.

Recommended literature: 
•	 Goldman and Miller, MIT 6.031: Software Construction, http://web.mit.edu/6.031/
•	 Martin, Clean Code: A Handbook of Agile Software Craftsmanship (2008)

ECTS: 4

Numerical Mathematics (KEN1540)

Coordinator: Dr. Pieter Collins

Examiners: Dr. Pieter Collins & Dr. Ir. Martijn Boussé 

Desired prior knowledge: Calculus, Linear Algebra

Prerequisites: None.

Description: Numerical mathematics is the art of solving mathematical problems with the aid of a 
digital computer. In this course we will cover the fundamental concepts of numerical mathematics, 
including the floating-point representation of real numbers, truncation and round-off errors, 
iterative methods and convergence. We will study the simplest and most important algorithms 
for core problems of numerical mathematics, namely the solution of algebraic equations and 
differential equations, interpolating data by polynomials, numerically estimating derivatives and 
integrals, approximating functions by polynomials and trigonometric series, solving systems of 
linear algebraic equations and computing eigenvalues. There will be a strong practical component, 
with students being expected to write their own numerical code and test the performance and 
suitability of different methods on various problems. 

Knowledge and understanding: By the end of this course, students will have knowledge of the 
fundamental problems of numerical mathematics and basic techniques for their solution. You will 
understand issues of efficiency and numerical accuracy, will be able to analyse which numerical 
methods are likely to perform best on different types of problem, and evaluate whether the results 
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of a given computation are trustworthy. You will be able to write your own code (in MATLAB) 
implementing basic numerical algorithms. Advanced students will have the skills necessary to adapt 
existing numerical algorithms and develop new algorithms.

Applying knowledge and understanding: Students will be expected to implement the algorithms 
covered in the lectures themselves, apply them to practical problems, and explain the performance 
of different algorithms in terms of theoretical analyses.

Making judgements: Students will learn how to analyse which numerical methods are likely 
to perform best on different types of problem, and to evaluate whether the results of a given 
computation are trustworthy.

Communication: Students will learn the terminology required to discuss numerical algorithms and 
the results of numerical computations with mathematicians, (social) scientists and engineers.

Learning skills: Students will learn to design, analyse, implement and apply numerical methods.

Assessment: Written examination with formula sheet (100%). Preparatory exercises (+10% bonus).

Recommended literature: J.D. Faires & R. Burden, “Numerical Methods”, International 4th Edition, 
Cengage, 2012; ISBN: 978-0-495-38569-1.

Additional literature: C.F. Gerald & P.O. Wheatley, “Applied Numerical Analysis”, Seventh Edition, 
Pearson, 2003; ISBN: 0-321-13304-8.  
T. Siauw & A.M. Bayen, “An Introduction to Matlab Programming and Numerical Methods for 
Engineers”, Academic Press, 2015; ISBN 978-0-12-520228-3.

ECTS: 4

Project 1-2 (KEN1600)

Coordinator: Dr. Otti D‘Huys

Prerequisites: In order to participate in this project the student has to have passed
two out of four courses from the set: Discrete Mathematics, Calculus, Procedural Programming and 
Objects in Programming.  

Description: Students work on a project assignment in small groups of about seven students. 
The group composition stays the same for the whole project and is announced before the project 
opening in period 1.4. The students are guided through the project by a fixed tutor. The project 
assignment is related to the content of the courses from year 1. In period 1.4, after receiving the 
assignment for the whole project at the end of week 5, the students start working on the project 
in parallel to their courses. They meet their tutor approximately once every week. In period 1.6, the 
students work three weeks full-time on the project and meet their tutor twice a week. 

At the beginning of period 1.5, the students hand in a planning, along with a short summary about 
the work completed so far, and receive feedback from the examiners. By the end of period 1.5 the 
students have a midway evaluation as formative assessment, and hand in a draft report. In period 
1.6, they submit a final report on their project and attend a final examination.
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Knowledge and understanding: Interpret the meaning of mathematical models of real-world 
processes. Gain insight into practical use of software design and development principles. Recognise 
and relate user-computer interactions to concepts from graphics and user-interface frameworks.
Strengthen knowledge of basic algorithms and methods for specific problems in artificial 
intelligence and applied mathematics.

Applying knowledge and understanding: Students will be able to design an answer strategy for 
scientific questions using analytical thinking and logical reasoning and to translate mathematical 
models to software code. Furthermore, students will be able to implement software to solve 
problems in applied mathematics by applying numerical methods and artificial intelligence 
algorithms, formulate computational experiments, and analyse and interpret the results, apply 
design and development principles in the construction of software systems and use existing 
software application frameworks for graphics and user interfaces. Even more so, students will learn 
to use tools for software project management such as version control systems and issue trackers, 
identify project goals, deliverables, and constraints. Lastly they will learn how to plan and chair 
meetings, create notes for minutes, work in a team such that the workload is balanced and plan 
teamwork by setting deadlines and distributing tasks.

Making judgements: Students will learn to evaluate different mathematical and computational 
models with respect to their suitability, efficiency and correctness for a specific task.

Communication: Students will be able to give a clear and well-constructed presentation, including a 
demonstration of the product, and with appropriate use of illustrations and/or videos, to offer and 
respond to questions on and constructive criticism of presentations. Furthermore, they will learn to 
write a project report according to the structure of an academic article, submit arguments in exact 
sciences, with appropriate use of formulae and figures. They learn to cite published sources in the 
project report according to the academic guidelines. Additionally, students will learn to structurally 
inform stakeholders on project progress and effectively communicate with project group members 
about task division, planning and project deadlines, effectively communicate with group members 
by listening to others’ ideas; be contactable include others in the discussion. It will be important to 
cooperate in a group to reach a consensus view, communicate in the English language, elicit and 
evaluate relevant scientific background information.

Learning skills: Reflect on one’s own academic abilities and functioning in a team.

Study material: Project manual project 1-2, Maastricht University.

Assessment:

FinalGrade=0.9·(ProjectGrade v IndividualGrade)+skillClassGrade

The individualGrade is given due to either outstanding or not enough contribution of a student to 
the project. By passing skill classes, the students can get a reward called skillClassGrade, which is 1 
if the students passes sufficiently many components of all skill classes, 0.5 if the students passed 
most components, and 0 if the students fails for a critical amount of the skill class tasks. Failing all 
components of more than 2 skill classes will lead to an NG in the project. Missing mandatory project 
events such as project meetings and examination moments will lead to a reduction of the grade or 
even to receiving an NG for the project. 

Skill classes: There will be skill classes on the following topics (each with components spread over 
periods 1.4-1.5)

Information Research: Systematic Literature Search 
These skill classes will give the students an introduction to which databases, search strings and 
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settings can be used to systematically search for literature, and are guided in drafting a search plan 
for the relevant literature in the project. 

Team Dynamics 
The team dynamics workshops aim to provide the students with a deeper awareness, insight and 
practice in effective team collaboration & co-creation. In a later stage, students evaluate the team 
collaboration and communication by means of interactive exercises.

Academic Writing 
In the project skills components you will explore the key structure of your report, as well as key 
points of Academic Writing at Maastricht University. Areas of focus include: structure of paper; 
linguistic aspects of writing in English, presenting information logically and citation and reference 
procedures.

ECTS: 6

2.2 �Curriculum of the second year of the Bachelor Programme Data Science and 
Artificial Intelligence 

Year 2 ECTS

Period 2.1 Databases (KEN2110)
Probability and Statistics (KEN2130)
Graph Theory (KEN2220)
Project 2-1 (KEN2300)

4
4
4

Period 2.2 Reasoning Techniques (KEN2230)
Machine Learning (KEN2240)
Simulation and Statistical Analysis (KEN2530)
Project 2-1 (KEN2300)

4
4
4

Period 2.3 Project 2-1 (KEN2300) 6

Period 2.4 Human Computer Interaction and Affective Computing (KEN2410)
Theoretical Computer Science (KEN2420) (**) or Multivariable Calculus (KEN3250) (**) 
Mathematical Modelling (KEN2430)
Project 2-2 (KEN2600)

4
4
4

Period 2.5 Philosophy and Artificial Intelligence (KEN2120)
Linear Programming (KEN2520)
Natural Language Processing (KEN2570)
Project 2-2 (KEN2600)

4
4
4

Period 2.6 Project 2-2 (KEN2600) 6

(*) Project 2-1 will start in period 2.1 and will run until period 2.3 with weekly meetings; Project 2-2 will start in period 2.4 and 
will run until period 2.6 with weekly meetings. The credits for the projects will become available at the end of period 2.3 and 
2.6 respectively.

(**) Elective: in case students have passed both electives of period 2.4, Theoretical Computer Science or Multivariable 
Calculus can replace 1 of the third year electives.

For each period, we will give a short explanation of the various parts. Before the start of each period, 
the students will receive detailed information about the content, the study material, the teaching 
form, the schedule, and the examination method.
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Period 2.1 

Databases (KEN2110) 

Coordinator & examiner: Tom Pepels, M.Sc.

Tutor(s): TBA

Desired prior knowledge: Programming in Java or other comparable language, Data Structures and 
Algorithms (KEN/BCS1420), Software Engineering (KEN1520)

Prerequisites: None.

Description: This course delves into the principles and practical applications of database systems, 
emphasizing relational databases and data modeling aimed at developing robust, data-intensive 
software applications. Students will learn to utilize Structured Query Language (SQL) for effective 
data manipulation, ensuring database transactions are Atomic, Consistent, Isolated, and Durable 
(ACID). The curriculum expands to cover alternative data storage solutions, including distributed 
databases and NoSQL technologies, offering insights into various object persistence techniques. 
Throughout the course, participants will gain hands-on experience with different database 
management systems (DBMS), learning how to select and employ these systems in the construction 
of sophisticated software solutions.

Knowledge and understanding: Students will acquire a solid understanding of database 
fundamentals, including the core concepts of database management systems, query languages, 
data modeling, and database programming. The course aims to build a comprehensive foundation, 
enabling students to articulate the principles underpinning relational and distributed database 
technologies and their application in real-world scenarios.

Applying knowledge and understanding: Participants will apply their knowledge to design and 
implement efficient database solutions tailored to specific system requirements. They will explore 
the capabilities and limitations of various database types, integrating software architectures to 
devise and develop comprehensive database applications. Practical exercises will reinforce the 
theoretical concepts, enhancing students’ competency in database design and implementation.

Making judgements: Students will develop the ability to critically analyze database design 
challenges, comparing different modeling approaches to optimize database structures based on 
practical use cases. This includes the capacity to refine database models, propose enhancements 
to existing designs, and evaluate the integrity and effectiveness of database implementations 
critically. Through case studies and project work, students will practice making informed decisions 
to solve complex database problems.

Communication: The course will equip students with the skills to effectively communicate database 
concepts, designs, and solutions to a varied audience, including developers, database administrators, 
and end-users. Emphasis will be placed on articulating the key entities, relationships, and processes 
involved in database systems, fostering clear and concise communication in technical and non-
technical contexts.

Learning skills: By engaging with the course content, students will cultivate the ability to 
independently explore and understand advanced topics in database management and development. 
This includes identifying relevant literature and resources beyond the course materials, encouraging 
continuous learning and adaptation to emerging database technologies and methodologies.
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Study material: Weekly lecture slides and extra materials

Exam: Written exam (75%) + practical assignment (25%)

Recommended literature: Alan Beaulieu, 2020. Learning SQL, (3rd ed.). O’Reilly Media, Inc.

Additional literature: Martin Kleppmann, 2017. Designing Data-Intensive Applications. O’Reilly 
Media, Inc.

ECTS: 4

Probability and Statistics (KEN2130)

Examiner: Dr. Christof Seiler

Desired Prior Knowledge: Discrete Mathematics and Calculus

Prerequisites: None.

Course Description: This course is a first introduction to probability and statistics. We will start by 
learning how to count and define a notion of probability. We will then move on to the concept of 
conditional probability, random variables and their distributions, expectation, continuous random 
variables, moments, joint distributions, and inequalities and limit theorems. This will provide us with 
the necessary language to study central topics of importance in statistics, such as the difference 
between a population and a sample, confidence intervals, parameter estimation, and hypothesis 
testing.

Knowledge and understanding: In this course, the students obtain tools to define random variables 
and identify probability distributions in a wide range of probabilistic experiments. Furthermore, 
they know which procedure is most appropriate to find an answer to a given statistical question.

Applying knowledge and understanding: Students are capable of calculating probabilities, 
expectations, variances and related quantities in a wide range of probabilistic experiments. 
Furthermore, they can estimate statistical quantities and perform statistical tests to extract 
information from data sets.

Making judgements: Students can critically analyze probabilistic experiments and statistical 
inferences and can decide whether to accept or reject statistical hypotheses.

Communication: The students will be able to communicate their conclusions and the underlying 
rationale to expert and non-expert audiences.

Learning Skills: Students are able to use elements from probability theory and statistics in other 
domains in order to increase one’s knowledge.

Study material: Hwang and Blitzstein, Introduction to Probability (2019, second edition)

Exam: 20� homework assignments and 80� written final exam

ECTS: 4
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Graph Theory (KEN2220)

Examiner: Dr. Matus Mihalák

Desired Prior Knowledge: Discrete Mathematics; Data Structures and Algorithms

Prerequisites: None

Description: A graph is simply a collection of points, some of which are joined by lines. This 
deceptively simple structure is one of the cornerstones of both theoretical and applied computer 
science. A great many problems that arise in the real world can be modeled as graph problems. 
Several classical examples include the problem of finding the shortest route between two cities, of 
maximizing flow in a network of pipelines, or of finding an optimal pairing between producers and 
consumers. In this course we will look at both the algorithmic/applied side of graph theory and its 
more abstract mathematical foundations, because the latter is often important for understanding 
the former. We will cover topics such as paths, tours, trees, matchings, flows and colorings.

Knowledge and understanding: Students will have a solid overview of the basic concepts and results 
of (applied) graph theory, including the main mathematical tools to argue about graphs. Students 
will have the tools to model and analyze various real-world problems using graphs.

Applying knowledge and understanding: Students will be able to recognize when a problem can be 
modeled with graphs, and whether the problem can be efficiently solved using standard or slightly 
adjusted graph-theoretic algorithms.

Making judgements: Students will be able to formulate a given (sub)problem as a graph-theoretic 
problem, argue why the formulation is correct, and they will be able to judge the feasibility of 
existing algorithmic solutions.

Communication: Students will be able to explain, in the language of graph theory, how a problem at 
hand can be modelled and solved.

Learning skills: Students will enhance their study skills such as time management, effective reading, 
critical thinking and reading, exact and unambiguous writing and formulation of ideas and 
statements, and reflection on marked (graded) work. Along the way, students will improve general 
learning skills such as self-motivation, careful listening and giving instructions, and openness to 
new knowledge.

Study material: Appropriate material will be provided during the course.

Recommended literature: None.

Exam: Written exam (80� of the final grade). Bi-weekly graded exercises (20% of the final grade).

ECTS: 4
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Period 2.2 

Reasoning Techniques (KEN2230) 

Coordinator: Dr. Tjitze Rienstra 

Examiners: Prof. Dr. Mark Winands and Dr. Tjitze Rienstra

Desired Prior Knowledge: Introduction to Data Science and Artificial Intelligence; Logic.

Description: Central in this course is how, based on available data, new knowledge and information 
can be obtained using reasoning processes. The course will be supported by tutorials, in which the 
acquired techniques can be put into practice by using Prolog. The following four techniques are 
discussed:
1.	 Reasoning using logic: syntax, semantics, and inference in first-order logic, situation calculus, 

forward and backward reasoning, completeness, logic programming with Prolog.
2.	 Problem solving using search: problem types, blind-search methods, informed-search methods, 

comparison of search methods, games as search problems, minimax, alpha-beta pruning, Monte 
Carlo Tree Search, chance games, constraint satisfaction problems.

3.	 Planning: planning in situation calculus, representation of states, goals and operators, state 
space and plan space, algorithms for classic planning.

4.	 Reasoning with uncertainty: uncertainty and probability theory, conditional probability, the Rule 
of Bayes, semantics of belief networks, exact and approximate inference in belief networks.

Knowledge and understanding: Students learn to understand how problems can be represented as 
logical problems, as search problems, as planning problems or as problems involving uncertainty 
and get accustomed to reasoning methods to solve problems of all four types mentioned above.

Applying knowledge and understanding: Students learn to apply the reasoning methods learned to 
toy problems and some more complex situations.

Making judgements: Students learn to judge which type of knowledge representation is suitable for 
the problem at hand, and which reasoning technique is suitable to solve the problem at hand.
Communication: students can explain the knowledge representation used and reasoning technique 
chosen to peers and other experts.

Communication: Students can explain the knowledge representation used and reasoning technique 
chosen to peers and other experts. 

Learning skills: Students are able to critically reflect on their own and other’s chosen 
representations and used reasoning methods.

Study material: Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 4th edition. 
Pearson, 2020. Bratko, I. (2012). Prolog: Programming for Artificial Intelligence, 4th edition. Addison-
Wesley , 2011.

Assessment: Closed-book written exam (80% of final grade) and assignments during the course 
(20% of final grade). 

Recommended literature: Luger, G.F., Artificial Intelligence: Structures and Strategies for Complex 
Problem Solving, 6th edition. Pearson International Edition, 2009.

ECTS: 4
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Machine Learning (KEN2240) 

Examiners: Dr. Evgueni Smirnov and Dr. Enrique Hortal Quesada,

Desired prior knowledge: Procedural Programming, Calculus, Linear Algebra, Logic, Probability and 
Statistics

Prerequisites: None

Description: Machine learning is a major frontier field of artificial intelligence. It deals with 
developing computer systems that autonomously analyse data and automatically improve 
their performance with experience. This course presents basic and state-of-the-art techniques 
of machine learning. Presented techniques for automatic data classification, data clustering, 
data prediction, and learning include Decision Trees, Bayesian Learning, Linear and Logistic 
Regression, Recommender Systems, Artificial Neural Networks, Support Vector Machines, Instance-
based Learning, Rule Induction, Clustering, and Reinforcement Learning. Lectures and practical 
assignments emphasize the practical use of the presented techniques and prepare students for 
developing real-world machine-learning applications.

Knowledge and understanding: After successful completion of the course, students will be able 
to describe and explain the basic machine learning algorithms. Students will understand the 
mathematical foundation of machine learning algorithms and how mathematical methods are 
successfully combined to obtain the variety of machine learning algorithms that are currently 
available.

Applying knowledge and understanding: Students will acquire the knowledge to apply, formulate, 
and validate techniques from machine learning and to apply basic machine learning algorithms 
to real-life problems. Students will be able to implement machine-learning algorithms in software 
and apply existing machine learning software implementation to datasets. Students will have the 
necessary knowledge to design, implement, and apply data processing systems that autonomously 
extract information from data, interpret results, and make decisions. 

Making judgements: Students learn how to critically analyse real-world problems, select 
appropriate machine learning techniques according to the specific problem, and predict the 
consequences of their choices. After successful completion of the course, students gain the ability to 
judge which problems can be solved better and to which extend through the application of machine 
learning techniques. Students obtain an awareness of and responsibility for ethical and social 
consequences of developments in and application of machine learning.

Communication: The skills acquired during the course will allow students to present the results of 
different stages of the application of machine-learning techniques to specialists or non-specialists.

Learning skills: After successful completion of the course, students can analyse, adapt, design, 
implement, and critically reflect on machine-learning algorithms and tools. Students also obtain the 
critical fundamental skills and knowledge to study further advanced machine learning techniques in 
the professional literature.

Study material: Lecture material provided during the lecture.

Recommended literature: 
•	 T. Mitchell (1997). Machine Learning, McGraw-Hill, ISBN-13: 978-0071154673.
•	 H. Blockeel, Machine Learning and Inductive Inference (course text), Uitgeverij ACCO, 2012.
•	 I.H. Witten and E. Frank (2011). Data Mining: Practical Machine Learning Tools and Techniques 

(Third Edition), Morgan Kaufmann, January 2011, ISBN-13: 978-0123748560.

Exam: Written “open-book” exam at the end of the course. During the course, students receive 
several graded assignments that can earn them a maximum bonus grade of 1.0.

ECTS: 4
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Simulation and Statistical Analysis (KEN2530) 

Examiners: Dr. Joel Karel and Dr. Marijn ten Thij

Prior Knowledge: Knowledge: Probability & Statistics, Calculus, Matlab, and Java. 

Prerequisite: None. 

Description: Mathematical simulation is concerned with studying processes and systems. 
Uncertainty can be an important factor and must be modelled properly. For modelling systems, all 
the available data must be analyzed. After modelling a complex system, various scenarios can be 
simulated, using Monte Carlo simulation, to gain insight. The results need to be properly interpreted 
and the experiments can be designed in such fashion that the downstream analysis is obeying 
certain assumptions. Furthermore, uncertainty has to be reduced and one must understand how 
uncertainty influences decisions. The modelling, implementation, analysis, and technical aspects 
will be discussed as an introduction in this field. Emphasis will be on discrete event simulation and 
the statistical analysis of the output of simulation studies, where topics are: modelling, Poisson 
processes, random number generators, selecting and testing input distributions, generating random 
variates, experiment design, statistical analysis of experiments, comparing experimental results and 
variance reduction. Practical exercises will be used to place the techniques in context.  

Knowledge and understanding: Define concepts of simulation, discrete event simulation and 
statistical inference. Explain techniques underlying mathematical simulation. Explain methods for 
analyzing experimental results and efficient simulation including their assumptions, justify why 
they are important, and match them to simulation design. 

Applying Knowledge and understanding: Being able to model a system in a structured manner, 
to design and implement simulators for systems, and to collect data from these simulations. In 
addition, you will be able to employ techniques underlying mathematical simulation and apply 
methods from statistics for analyzing experimental results. 

Making judgements: Being able to choose and motivate alternative techniques underlying 
mathematical simulation. Choose, motivate, and contrast methods for statistical analysis. 

Communication: Being able to convey the phases of a specific simulation study to non-experts. 
Being able to explain the assumptions and choices made when analyzing experimental data to 
experts and non-experts.

Learning Skills: The ability to independently learn to handle large-scale simulation. To identify 
shortcomings in data analysis.

Study material: Simulation Modeling and Analysis (5th edition) -Averill Law 

Recommended literature: Object-Oriented Computer Simulation of discrete-event systems – Jerzy 
Tyszer, Design and Analysis of Experiments – Douglas C. Montgomery, Introduction to Probability 
Models – Sheldon M. Ross.

Exam: Written exam and assignments and/or bonus assignments. 

ECTS: 4
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Project 2-1 (KEN2300) 

Coordinator: Dr. Katharina Schneider 

Prerequisites: Students must have passed Project 1-1. Furthermore, the student has to have passed 
at least two out of the following three courses: Procedural Programming, Objects in Programming, 
and Data Structures and Algorithms. The student furthermore needs to be registered for or has 
already completed at least three courses of the programme in year 2, semester 1. This project is a 
prerequisite for Project 3-1.

Description: Students work on a project assignment in small groups. The group composition stays 
the same for the whole project and is announced at the beginning of period 2.1. Throughout the 
project, the groups are guided  by a tutor with respect to the project management. The project 
assignment is related to the content of the courses from period 2.1 and 2.2. In periods 2.1 and 2.2, 
the students work on the project, while also having to attend the courses of these periods. They 
meet their tutor approximately once every two weeks. In period 2.3, the students work three weeks 
full-time on the project and meet their tutor about once to twice a week. 

The focus of this project lays on the software implementation/design and the product functionality. 
During the project, the students have to hand in several deliverables such as a project plan after 
a few weeks from the start or the implemented code at the end of the project. Peer feedback on 
implementations will add to the quality of feedback the students receive. Presentations throughout 
the project will be used to communicate the progress to the examiners. 

Applying knowledge and understanding: Students will learn to concretize project assignment 
and construct and maintain a planning Furthermore, they will learn formulating, selecting and 
validating models for the problem chosen and collect and interpret experimental data with 
evaluation metrics. Lastly they will improve their ability to plan and chair meetings, create notes 
for minutes, work in a team such that the workload is balanced and plan teamwork by setting 
deadlines and distributing tasks.

Making judgements: After completing this project, students will be able to compare and criticize 
results, position them in terms of the literature diagnose limitations and formulate a discussion.

Communication: Students will be able to write a scientific paper that: describes the project, explains 
the methods, summarizes the outcomes, discusses them and makes the conclusions. Students will 
be able to present and defend project in English and coordinate project progress in project meetings

Learning skills: Students will be able to reflect on the progress of the project and study relevant 
literature to solve problem at hand.

Study material: Project manual project 2-1, Maastricht University.

Assessment: The assessment is composed of a grade for the following deliverables:
•	 Project plan
•	 Product 
•	 Report 

Furthermore, a grade for the project management and a peer feedback grade on the product 
functionality will be included in the final grade. 

As the focus of this project lays on the software implementation/design and product functionality, 
the grade for the product has the highest weight. 
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The examiners can deviate from the group grade if a student shows either outstanding or not 
enough contribution to the project. Missing mandatory project events such as project meetings and 
examination moments will automatically lead to a reduction of the grade or even to receiving an 
NG for the project.

By passing skill classes, the students can get a reward called skillClassGrade, which is 1 if the 
students passed all skill classes, 0.5 if the students passed all but one skill classes, and 0 if the 
students passed all but two skill classes. Failing more than two skill classes will lead to an NG in the 
project. 

Skill classes: The project comes along with skill classes that enhance the students’ soft and hard 
skills. They are closely related to the deliverables of the project. Skill classes are mandatory to pass 
to complete the project. 

ECTS: 6

Period 2.4 

Human Computer Interaction and Affective Computing (KEN2410)  

Coordinator: Konstantia Zarkogianni

Examiners: Konstantia Zarkogianni & Yusuf Can Semerci

Tutors: Konstantia Zarkogianni & Yusuf Can Semerci

Desired prior knowledge: Machine Learning, Probabilities and Statistics.

Prerequisites: None.

Description: Within the frame of this course the multidisciplinary field of Human-Computer 
Interaction and Affective Computing (HCI&AC) will be studied. HCI is the study of interaction 
between people (users) and computers. It is often regarded as the intersection of computer science, 
behavioural sciences, design, and several other fields of study. Interaction between users and 
computers occurs at the user interface, which includes both software and hardware; for example, 
characters or objects displayed on a personal computer’s monitor and input received from users 
via hardware peripherals such as keyboard, mouse and web cameras. The cource will provide a 
comprehensive exploration of the field, preparing students to understand, analyze, and design 
interactive systems effectively. This course also covers Affective Computing, a new branch of HCI 
that places emphasis on user emotions and personality. Affective Computing attempts to bring 
emotions into intelligent interfaces that interact with humans and see how they can have a positive 
and constructive impact in human-machine interactions. Emphasis will also be placed on data 
analysis, from the perspectve of analyzing UX while interacting with interfaces. The course follows a 
project-based approach. 

Knowledge and understanding: Upon completion of the course, students will be able to understand 
the multidisciplinary nature of the HCI while building know how in prototyping techniques and 
technologies for testing a user interface. They will understand the main usability directives - 
principles, standards, guidelines, and patterns – within the frame of designing a user interface. They 
will also get familiar with affective computing and how relevant technologies can help in designing 
an effective user-interface. 
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Applying knowledge and understanding: After successful completion of the course, students will 
be able to design and implement low-fidelity prototypes of UI to serve as a tool for requirements 
extraction. They will also have the capacity to implement functional prototypes of UI for usability 
testing and conduct relevant user studies involving human participants. Students will be able to 
perform statistical data analysis and analyze emotions and personality traits. 

Making judgements: Students will develop critical skills towards designing, implementing, and 
assessing hard coded tasks that are appropriately linked with the usability principles.  

Communication: Students will develop communication and presentation skills to effectively convey 
innovative and complicated user-interfaces within a short time interval.

Learning skills: By the end of the course, students will be able to recognize challenges in human 
computer interaction systems and design UI elements reflecting end users’ emotions and 
personality traits.   

Study material: Lecture notes and slides

Assessment: Assignment 

Recommended literature: 
•	 Shneiderman B, Plaisant C, Cohen M, Jacobs S, Elmqvist N, Diakopoulos N. (2016) Designing 

the user interface: strategies for effective human-computer interaction. Pearson, ISBN: 978-
0134380384

•	 Calvo RA, D’Mello S, Gratch JM, Kappas A, (2015). The Oxford handbook of affective computing. 
Oxford University Press, ISBN: 978-0199942237

•	 Software tools for prototyping (e.g. Adobe XD, Justinmind, Mupixa)

Additional literature:
•	 Coursera video lectures of Scott Klemmer and accompanying slides.
 
ECTS: 4

Theoretical Computer Science (optional course) (KEN2420) 

Examiner: Dr. Georgios Stamoulis

Desired Prior Knowledge: Introduction to Data Science and Artificial Intelligence, Discrete 
Mathematics, Data Structures and Algorithms.

Description: This course explores the theoretical underpinnings of computing by investigating 
algorithms and programs casted as language recognition problems. The influence of the theory 
on modern hardware and software system design is demonstrated. The following subjects will 
be treated: mathematical foundations, alphabets and languages, finite automata and regular 
languages, Turing machines, acceptance and decidability, recursive functions and grammars, time 
complexity classes, NP problems, NP-completeness

Knowledge and understanding: Students will learn to comprehend the inherent complexity of 
problems and be able to motivate why some problems are inherently more difficult than others are. 
They will learn to have insight into how complex problems can be solved efficiently and will be able 
to classify such problems into a language hierarchy and complexity classes. Furthermore, students 
will be able to apply the tools needed for such classification
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Applying knowledge and understanding: students will be able to apply the theory learned to solve 
small-scale problems

Making judgements: Students will learn to judge which problems are decidable and efficiently 
solvable and to judge which technique is suitable to solve the problem at hand.

Communication: The knowledge representation used and technique from complexity theory chosen 
must be easily understandable by peers and others experts

Learning skills: The student will learn to reflect on own one’s and other’s thoughts on complexity 
and solvability of problems. 

Study material: Elaine Rich (2008), Automata, Computability and Complexity, Prentice Hall, New 
Jersey, ISBN 0-13-228806-0.

Exam: Written exam; during the course the students will receive three assignments, that, if they 
receive a sufficient grade, may earn them up to a total of one bonus point.

ECTS: 4

Mathematical Modelling (KEN2430) 

Examiner: Dr. Joel Karel and Prof. Dr. ir. Ralf Peeters.

Desired Prior Knowledge: Linear Algebra, Calculus, Matlab.

Description: Mathematical modelling is of great importance for solving practical problems by 
casting them into a form suitable for the use of mathematical techniques. In this course, a number 
of basic topics are discussed. First, attention is paid to a framework for mathematical modelling. 
Then we focus on some widely used model classes from engineering, in particular on the class of 
linear time-invariant dynamical models. These are described by linear difference equations (in 
discrete time) or linear differential equations (in continuous time). Alternative model descriptions 
that are discussed are transfer functions (in the frequency domain) obtained with the z-transform 
and the Laplace transform respectively; and state-space models, which may or may not involve 
canonical forms. Some further topics receiving attention are the concepts of stability, sinusoidal 
fidelity, Bode diagrams, the interconnection of subsystems, and the technique of pole placement by 
means of state feedback.

The subject matter is clarified through exercises and examples involving practical applications. Also, 
relevant functionality in Matlab is introduced, which offers a powerful instrument for analysing 
linear dynamic models.

Knowledge and understanding: Being able to formulate linear dynamical models, state properties 
and define representations. Identify frequency domain properties of systems and relate them to 
applications in signal processing.

Applying knowledge and understanding: Being able to construct elementary mathematical models. 
Perform model analysis and extract model properties. Employ various model representations and 
choose the most appropriate one. Compute state-feedback control.
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Making judgements: To recognize what are the important aspects to consider when building a 
mathematical model. Decide on stability of models.
Communication: Being able to convey properties of models to specialists and non-specialists.

Learning skills: Being able to independently find Matlab functionality to solve basic problems in 
systems theory.

Study material: Lecture notes.

Recommended literature: Richard J. Vaccaro, Digital Control: A State-Space Approach, McGraw-
Hill, 1995, ISBN 0-07-066781-0. Robert L Williams , Douglas A Lawrence, Linear state-space control 
systems, Publisher: John Wiley & Sons 2007, ISBN: 978-0-470-11787-3, 0-470-11787-7.

Exam: Written exam and assignments and/or bonus assignments.

ECTS: 4

Multivariable Calculus (optional course) (KEN3250)

Coordinator & examiner: Dr. Stefan Maubach

Tutors: student TAs + dr. Stefan Maubach

Desired prior knowledge: Calculus, Linear Algebra

Description: Multivariable calculus develops calculus into more than one variable. Multivariable 
calculus can help to better understand techniques and algorithms used to analyze multidimensional 
data or optimization techniques used to train neural networks.   In this course, we use vector 
calculus combined with calculus/analysis, and we introduce path functions, curves, surfaces and 
volumes, and learn how to perform various types of integration: integration along paths, over 
surfaces and volumes, and flux. We learn how to transform into different coordinate systems 
(polar, cylindrical, spherical). We discuss extensions of the chain rule and product rule to higher 
dimensions, and the corresponding extensions of derivative and tangent lines/planes. We 
cover complex numbers and some of complex functions. We also cover some methods to solve 
optimization problems. We look at several types of differential equations. 

Knowledge and understanding: Students understand various multivariable analysis and calculus 
problems. They know what it means to differentiate and integrate in more than one variable, and 
they understand specific optimization problems, and how to solve those. They are able to link their 
knowledge of linear algebra to multivariate calculus. They understand the theoretical background 
of specific problems in multivariable calculus, and  are able to give (partial or full) proofs of some of 
the theory.

Applying knowledge and understanding: Students can model certain types of practical problems, 
or problems which are not exactly stated, into calculus problems.  They are able to differentiate and 
integrate in more than one variable, and how to solve specific types of differential equations.

Making judgements: Students are able to judge what is the correct path to take to tackle  a 
challenging problem, especially when there are several ways to solve it, not all of which are optimal 
or equally efficient. They can judge results of calculations and what they represent.
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Communication: Students can communicate their results, and defend its validity if asked.

Learning skills: Students learn how to deal with a topic that at first glance has an unforeseeable 
amount of different cases, and how to extend and apply this knowledge to new problems.

Study material: 
•	 Main source: Lecture notes provided on the course page
•	 Complimentary source: Hass, Heil, Weir, Bogacki, Thomas, Universty Calculus fifteenth edition in 

SI units,  Pearson, ISBN 978-1-292-25311-4 (Many versions of this book exist, exercise numbers 
and paragraphs differ between versions.)

Exam: 
•	 Closed book
•	 A formula sheet may be provided on exam (will be exactly as provided beforehand on the course 

page)
•	 Allowed aids: calculator from DACS allowed calculator list
•	 The exam is 120 minutes, without breaks

Skill classes: Tutorials.

ECTS: 4

Period 2.5 

Philosophy & Artificial Intelligence (KEN2120) 

Examiner: Dr. Robert Gianni

Prerequisites: none.

Description: One of the characteristics of scientific knowledge is the translation of natural 
phenomena into quantitative or mathematical data – the book of nature, Galileo wrote, is written 
in the language of mathematics. Over the course of the twentieth and twenty-first century, this 
desire to understand the world through the logic of mathematics has been extended beyond the 
natural world to include such things as human consciousness, learning, and intelligence. Indeed, the 
foundation of what is called ‘artificial intelligence’ is the pursuit of replicating human consciousness 
and intelligence through mathematical models and formulas. In this course we will examine 
these issues from a philosophical perspective, beginning with a basic overview of the notion 
of intelligence with an emphasis on quantification and then moving on to study philosophical 
issues that have developed out of the pursuit of artificial intelligence. We will analyse different 
understandings of intelligence, the effects of AI-based technologies like Large Language Models and 
continue through ethics framework aimed at addressing the role of technology in specific ways (e.g. 
robotics). Finally, we will operate an overview of the main regulatory frameworks from an ethical 
and political perspective. 

Knowledge and understanding: At the conclusion of this course, students should be able to 
demonstrate knowledge of the following topics:
•	 The understanding of different meanings of intelligence 
•	 The philosophical presuppositions of artificial intelligence 
•	 The societal impact of artificial intelligence
•	 The ethics theories addressing artificial intelligence
•	 The international research frameworks and regulatory standards around artificial intelligence
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Applying knowledge and understanding: Students will be able to draw upon both lectures and 
readings to write an essay that exhibits critical reflections on conventional and naïve notions of 
instrumentalism, technological determinism, and functionalism by persuasively arguing for a 
contextual approach that highlights the contingency and flexibility of design and meaning. 

Making judgements: Students are asked to select relevant passages from texts that contribute to 
the argument that they make in the essay. This will be graded. In tutorials, students are asked to 
make decisions about specific problems (i.e. self-driving cars, Turing tests). This is not graded.

Communication: During tutorials, students will discuss the texts orally with their classmates and 
work in groups to provide experiment around alternative conceptions of AI.

Learning Skills: Students will be able to articulate and solve problems in groups. Students will also 
be expected to engage with a number of theories concerning computation and artificial intelligence 
through different texts and will be asked to reflect upon and critique these theories.

Study material: Selected texts will be made available.

Exam: Multiple answers and open questions.

ECTS: 4

Linear Programming (KEN2520)

Examiner: Dr. Steven Kelk

Desired Prior Knowledge: Linear Algebra.

Prerequisites: None

Description: A linear program is very different to, say, a Java program. It simply consists of a linear 
objective function (of potentially very many variables) and a set of linear inequalities. The goal is 
to find values of the variables, which maximize or minimize the objective function, subject to all 
the inequalities being satisfied. Linear programs - even very large linear programs - can be solved 
extremely quickly, in both theory and practice. The model is also expressive enough to capture a 
large number of real-world problems. These two factors explain the fundamental role of linear 
programming in operations research, computer science, economics, management and many other 
fields. The course consists of an in-depth study of the simplex algorithm (a standard algorithm for 
solving linear programs), duality theory, and sensitivity analysis. Examples from practice illustrate 
the power of the model and teach the student the skill of modelling. Practical aspects of linear 
programming (e.g. use of software packages for solving linear programs, and integration with 
languages such as Java) are also considered.

Knowledge and understanding: Students will be able to identify which real-world optimization 
problems can be formulated as linear programs. Students will be able to describe the mathematical 
foundations of the Simplex algorithm for solving linear programming, and articulate how these 
foundations impact upon the performance of the Simplex method in practice.  Students will 
recognize the power and importance of duality theory for reasoning about the behaviour of linear 
programs (in particular with regard to sensitivity analysis). Students will be able to exhibit an 
awareness of non-Simplex paradigms for solving linear programs (interior-point methods) and be 
able to recount the importance of the linear programming model in operations research and applied 
mathematics.
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Applying knowledge and understanding: Students will be able to 1) translate mathematical models 
into linear programs, 2) to apply the Simplex method by hand to solve small linear programs, 3) 
to show how the Simplex method behaves in normal and exceptional cases, 4) to manipulate the 
algebra underpinning the Simplex method, 5) to combine insights from this algebra and primal-dual 
relations to make rigorous statements about the (sub)optimality of solutions to linear programs, 6) 
to argue how small changes to linear programs impact upon their optima (sensitivity analysis), 7) to 
explain key differences between the Simplex method and interior-point methods, and to 8) leverage 
linear-to program arguments when developing simple algorithms for combinatorial optimization 
problems.

Making judgements: Students will be able to distinguish between mathematical models that can 
and cannot be cast as a linear program. Students will be able to contrast and compare the behaviour 
of the Simplex algorithm with interior-point methods. Students will be able to select, out of a large 
range of algebraic and duality-based instruments, appropriate tools for making rigorous statements 
about linear programs.

Communication: Students will be able to formulate linear programs and defend their correctness. 
Students will be able to clearly articulate and defend algebraic and duality-based arguments 
concerning linear programs.

Learning Skills: By the end of the course, students will be able to autonomously and critically reflect 
upon the appropriateness of the linear programming paradigm for tackling optimization problems 
arising in practice and be able to assess the correctness of mathematical arguments pertaining to 
linear programming. Students will be able to identify follow-up literature, which goes beyond the 
scope of the material presented in the course.

Study material: Hillier & Lieberman (2010 or 2015): Introduction to Operations Research (9th or 
10th edition). McGraw Hill, ISBN 978-007-126767-0 or ISBN 9781259162985. Support for the 11th 
edition is forthcoming.

Recommended literature: students are beforehand encouraged to refresh their knowledge of: 
(unique) solutions of systems of linear equations, matrix inversion, and matrix rank.

Exam: Written exam and optional bonus exercises (the results of which are added to your exam 
score, up to 10%). 

ECTS: 4

Natural Language Processing  (KEN2570) 

Examiners: Dr. Jerry Spanakis and Dr. Aki Härmä

Desired Prior Knowledge: Procedural Programming, Objects in Programming, Probability and 
Statistics, Machine Learning

Prerequisites: None

Description: ChatGPT can answer almost any question you have. Siri can tell me when I need an 
umbrella. But how do they work? Over the past few years, Natural Language Processing (NLP) 
was revolutionized by statistical, probabilistic and machine learning methods. NLP addresses 
fundamental questions at the intersection of human language and machine learning. How can 
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computers acquire, understand and produce language? How can computational methods give 
us insight into observed human language phenomena? How to make sense of the vast amounts 
of information available online in free, unstructured form? In this course students will learn how 
computers can learn useful text/language representations and how different tasks (language 
modelling, text classification, information extraction, sequence labeling, etc.) can be used for solving 
different complex problems (spelling correction, spam detection, search engine design, opinion 
analysis, summarization, question-answering, etc.). Open NLP problems (such as evaluation or 
interactive dialogue systems) and the effect of deep learning on NLP will be discussed.

Knowledge and understanding: By the end of the course, students are able to acquire the basic text 
and language processing aspects. Furthermore, students are able to describe basic NLP problems, 
tasks and methods.  

Applying knowledge and understanding: Students are able to demonstrate how to tackle a text/
language problem and to formulate, design and implement a NLP system. Students are able to 
suggest when a problem’s complexity requires an NLP solution.

Making Judgements: Students are able to pose questions and define problems in different domains 
(e.g. social sciences) and contexts (e.g. business) that include language/text data. Furthermore, 
students are able to judge which tools are applicable for solving these problems and to decide a 
course of action in accordance with ethical and social consequences.

Communication: Students are able to outline an approach in real organizational problems, which 
require NLP and are able to demonstrate, present and communicate a solution to a NLP problem

Learning Skills: Students are able to master and choose the appropriate basic programming tools 
for NLP and are able to follow up on literature that will allow them to build complete NLP models.

Study material: Handouts, Jupyter and Google Collab notebooks 

Recommended Literature: 
1.	 Daniel Jurafsky and James H. Martin. “Speech and language processing an introduction to 

natural language processing, computational linguistics, and speech.” Pearson, London, 2000
2.	 Chris Manning and Hinrich Schütze. “Foundations of Statistical Natural Language Processing”. 

MIT Press. Cambridge, MA. 1999
3.	 Jacob Eisenstei. “ Introduction to natural language processing”. MIT press, 2019.
4.	 Yoav Goldberg. “Neural Network Methods for Natural Language Processing”. Synthesis Lectures 

on Human Language Technologies #37, Morgan and Claypool, 2017.

Exam: Practical individual assignments (30%) + Open-Book Written Exam (70%). 
 
ECTS: 4
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Project 2-2 (KEN2600) 

Coordinator: Dr. Katharina Schneider

Prerequisites: Students must have passed Project 1-2. Furthermore, the student has to have passed 
at least two out of the following three courses: Procedural Programming, Objects in Programming, 
and Data Structures and Algorithms. The student furthermore needs to be registered for or has 
already completed at least three courses of the programme in year 2, semester 2. This project is not 
a prerequisite for another project / course.

Description: Students work on a project assignment in small groups of about six students. The 
concrete assignment is defined by the students given some umbrella topics that match the courses 
in the curriculum. Students indicate their umbrella topic preference at the beginning of period 2.4. 
The group composition stays the same for the whole project and is based on the topic preferences 
of the students. A least regret algorithm is used to ensure that the overall regret is minimized. 
Throughout the project, the groups are guided  by a tutor with respect to the project management. 
In periods 2.4 and 2.5, the students work on the project, while also having to attend the courses of 
these periods. They meet their tutor approximately biweekly. In period 2.6, the students work three 
weeks full-time on the project and meet their tutor about twice a week. 

The focus of this project lays on the project planning and communication of progress and results. 
During the project, the students have to hand in several deliverables such as a project plan after a 
few weeks from the start or the implemented code at the end of the project. Formative feedback 
sessions with the examiners on intermediate project plans will add to the quality of feedback the 
students receive. Presentations throughout the project will be used to communicate the progress to 
the examiners. 

Applying knowledge and understanding: Students will learn to set up a project assignment and 
construct and maintain a planning. Additionally, they will learn formulating, selecting and validating 
models for a concrete problem at hand and to collect and interpret data with evaluation metrics. 
Lastly they will improve their ability to plan and chair meetings, create notes for minutes,  work in a 
team such that the workload is balanced and plan teamwork by setting deadlines and distributing 
tasks.

Making judgement: After completing this course successfully, students will be able to compare 
and criticize results, position them in terms of the literature; diagnose limitations and formulate a 
discussion

Communication: Students will be able to write a scientific paper that: describes the project, explains 
the methods, summarizes the outcomes, discusses them and makes the conclusions. Furthermore, 
student will be able to present and defend project in English. Coordinate project progress in project 
meetings

Learning skills: Students will learn to reflect on the progress of the project and study relevant 
literature to solve problem at hand

Study material: Project Opening slides, Maastricht University

Assessment: The assessment is composed of a grade for the following deliverables:
•	 Project plan
•	 Poster 
•	 Report
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Furthermore, a grade for the project management, the groups’ performance during the poster 
session and during a defense at the end of the project, and a peer feedback grade on the poster 
presentation will be included in the final grade. 

As the focus of this project lays on the planning and the communication of progress and results, 
the grades for the project plan, the poster presentation and the defense together have the highest 
weight. 

The examiners can deviate from the group grade if a student shows either outstanding or not 
enough contribution to the project. Missing mandatory project events such as project meetings and 
examination moments will automatically lead to a reduction of the grade or even to receiving an 
NG for the project.

By passing skill classes, the students can get a reward called skillClassGrade, which is 1 if the 
students passed all skill classes, 0.5 if the students passed all but one skill classes, and 0 if the 
students passed all but two skill classes. Failing more than two skill classes will lead to an NG in the 
project. 

Skill classes: The project comes along with skill classes that enhance the students’ soft and hard 
skills. They are closely related to the deliverables of the project. Skill classes are mandatory to pass 
to complete the project. 

ECTS: 6
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2.3 Curriculum of the Third Year of the Bachelor’s Programme Data Science and 
Artificial Intelligence

The first semester of the third year allows you to make your own selection of subjects in the field of 
artificial intelligence, data science, applied mathematics and computer science, the core areas of the 
study of Data Science & Artificial Intelligence. In each of the periods 1 and 2, you choose 3 out of 6 
optional courses. The first semester of year 3 has the same structure in the first and the second year; 
there are two periods of eight weeks and one period of four weeks. There is also a project in period 
3.3. Alternatively, students can choose to study the first semester of the third year at a partner 
university abroad.  Please check the Study abroad guide for more info: Going Abroad | DACS Intranet. 
Other options will be uploaded by the student counsellors..

Year 3 ECTS

Period 3.1* Digital Society (KEN3111)
Game Theory (KEN3130)
Semantic Web (KEN3140)
Recommender Systems (KEN3160)
Robotics and Embedded Systems (KEN3236)
Introduction to Quantum Computing (KEN3241)
Project 3-1 (KEN3300)

4
4
4
4
4

Period 3.2* Computer Security (KEN2560)
Software and Systems Verification (KEN3150)
Logic for Artificial Intelligence (KEN3231)
Parallel Programming (KEN3235)
Large Scale IT and Cloud Computing (KEN3239)
Introduction to Bio-Informatics (KEN3440)
Project 3-1 (KEN3300)

4
4
4
4
4
4
4

Period 3.3 Project 3-1 (KEN3300) 6

Period 3.4 Operations Research Case Studies (KEN3410)
Intelligent Systems (KEN3430)
Data Analysis (KEN3450)

4
4
4

Period 3.5-3.6 Bachelor’s thesis (KEN3500) 18

(*) Third year students choose three electives per period out of the optional courses during period 1 and 2 

** Project 3-1 will start in period 3.1 and 3.2 with weekly meetings. The credits for the project will become available at the end 
of period 3.3.

For each period, we will give a short explanation of the various courses. Before the start of each 
period, the students will receive detailed information about the content, the study material, the 
teaching form, the schedule, and the examination method.
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Period 3.1 

Digital Society (KEN3111) 

Lecturer & Examiner: Dr. Matthew Archer

Prerequisites: none. 

Desired prior knowledge: none. 

Description: Digitalization has a profound impact on our society. We can observe changes in 
different areas. What digital technologies do, what they look like and how they relate to each other 
is not identical worldwide, but dependent on local practices as well. Usually new technologies are 
understood as innovation and progress: and indeed, digital technologies improve a broad range 
of domains, such as healthcare or education. New possibilities as e.g. participation in our digital 
cultures arise but also new inequalities, as the access and competences needed for participation are 
not evenly distributed and the platforms that allow for participation also harbour new mechanisms 
of control and surveillance. The pace and diversity of these developments ask for continuous 
investigation and reflection. It requires work to shape and use technologies in ways that contribute 
to the public good. Moreover, digital technologies have also led to highly problematic developments 
such as electoral manipulation, fake news and algorithmic discrimination. 

Technological developments are often conceived as predefined or given. Does a society’s technology 
drive the development of its social structure and cultural values? Scholars in science and technology 
studies have shown that technology and society are deeply intertwined. Technology is inherently 
social. Technologies are shaped by people; they emerge and are embedded in social practices. 
The aim of this course is to investigate the consequences of digitalization for our society/societies. 
These consequences have been differently valuated: participation vs. exploitation of users, 
innovation as enhancement vs. challenge, ethics and techno-moral change vs./and sustainability. 
We will discuss digitalization from
•	 a social perspective when we read about digital participation and how technology and society 

are intertwined
•	 a political perspective when we discuss activism, digital citizenship but also problems of 

manipulation and verification (as in the case of fake news and deep fakes)
•	 a cultural perspective when we analyze imaginaries and discourses around innovation of 

technology and promises being made
•	 a legal perspective when we discuss privacy and the attempts to adapt privacy laws
•	 an ethical perspective when we discuss design decisions, privacy but also techno-moral change 

and questions of environment and sustainability.

The course is structured in the following way:
Transformations
(digital participation, digital citizenship, data-activism)

Imaginaries
(innovation and techno-moral change) 

Disruptions
(fake news and deep fakes, sustainability and e-trash)

Knowledge and understanding: Students acquire knowledge on the impact of digitalization on 
society.
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Applying knowledge and understanding: Students learn to understand the interrelation between 
digital technology and sociality.

Making judgements: Upon completion of the course, students can reflect on ethical challenges 
related to digitalization.

Communication: Students are able to communicate central topics related to digitalization to an 
audience of non-IT-experts (e.g. the debate will bring students from the FASoS Bachelor Digital 
Society and students from the bachelor’s Data Science and Artificial Intelligence following this 
course together to train both groups to communicate topics related to digitalization from a social 
science and IT perspective).

Learning Skills: Students are able to reflect critically in written form on a topic related to the digital 
society but also to do so orally in a presentation and debate.

Study material: The literature (provided via the reference list of the library).

Exam: (group) presentation in class (1-3 students) per task (25% of the final grade), 2 short academic 
papers of 1500 words each (2x25% of the final grade) and participation in a final debate (25% of the 
final grade). 
If a resit is needed for the (group) presentation, the presentation will be given via video (e.g. Zoom 
or Skype). If a student needs to resit the papers they can be rewritten and improved based on 
the comments of the tutor. If a resit is needed for the debate (in case a student does not show or 
participate in the debate), the student can write a 1500-word paper on the content of the debate 
instead.

ECTS: 4

Game Theory (KEN3130) 

Examiner: Prof. Dr. Frank Thuijsman

Prerequisites: Discrete Mathematics, Linear Algebra.

Description: We introduce the field of Game Theory. Game Theory is the mathematical study 
of problems, called games, that involve two or more decision makers, called players, who each 
have their own individual preferences over the possible outcomes. In a game, each player always 
aims to maximize his individual payoff and chooses his actions accordingly. These actions may be 
probabilistic or deterministic, depending on the situation. Meanwhile he reasons logically about 
actions that might be taken by the other players. A basic difference exists between strategic and 
non-strategic models. Both types of models and their solution concepts will be discussed. Issues like 
value, fairness, manipulations, threats, optimality and rationality will be addressed.

Knowledge and understanding: Students can recognize and classify the main types of games, i.e. 
cooperative games, strategic games, bipartite matching problems, and formulate the main solution 
concepts value, optimal strategies, Nash- and correlated equilibrium, as well as a number of 
algorithms to calculate these. 

Applying the use of knowledge and understanding: Students can calculate solutions for the 
different types of games

50 - Student Handbook



Making Judgements: Students can explain advantages and disadvantages of different solution 
concepts. They are able to judge the correctness of solutions presented Communication: Students 
can explain and defend the correctness of their solutions

Learning Skills: By the end of the course, students will be able to autonomously and critically reflect 
upon the pros and cons of different types of games for modelling competition and cooperation. This 
includes considerations on the computational aspects with respect to different solution concepts.

Study material: Lecture notes.

Examination: There will be a closed book written exam at the end of the course.

ECTS: 4

Semantic Web (KEN3140) 

Examiner: Dr. Remzi Celebi

Desired Prior Knowledge: Logic.

Description: Most of the information available on the World Wide Web (WWW) is not directly 
understandable for computers. For instance, web pages are designed for human readability. 
Computer programs have difficulty in interpreting the information presented on web pages.  
The focus on human readable information introduces restrictions on what computer programs can 
do to support human users in tasks such as:
•	 finding information
•	 buying goods
•	 making travel plans

The Semantic Web should eliminate these restrictions by separating the content of what is 
presented on a web page from the way it is presented. In recent years, the focus has shifted to 
providing data, independent of webpages (for example: Linked Open Data (LOD)

Ontologies are used to provide a shared conceptualization of information. Ontologies form the basis 
of the Semantic Web, Knowledge Based System, Databases, etc., and they play an important role 
in data exchange and interoperability in many domains. Ontologies are applied in the bio-medical 
domains, in data mining applications, in Linked Open Data (LOD), in websites based on semantic 
technology, etc. 

Since ontologies are intended to be shared between different systems, defining an ontology is a 
challenging task. 

This course will focus on the standards the World Wide Web Consortium (W3C) is defining in order 
to realize the Semantic Web. The course also addresses the underlying knowledge representation 
formalisms of the current semantic web standards. Moreover, the course will address the 
engineering principle of crating an ontology. Note that the course does not address standards for 
making websites. 

Knowledge and understanding: Making the student familiar with the developments and standards 
of the Semantic Web. The student will get insights in semantic web standard, such as RDF, RDFa, 
SPARQL and OWL2. Moreover, the students will get some basic insight in the semantics of RDF and 
the Description Logic underlying OWL. Finally, the student will be made familiar with the ontology 
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development process, and criteria for evaluating an ontology. The student should understand the 
role of upper ontologies and ontology design patterns, as well as the philosophical choices they 
represent.

Applying knowledge and understanding: The student should be able to build applications using 
semantic web standards such as RDF, RDFa, SPARQL and OWL2. The student should also be able to 
develop an ontology for an application domain.

Making judgements: The student should be able to judge whether and how semantic web 
standards can be applied in applications. The student should also be able to judge the quality of an 
ontology.

Communication: The student should have sufficient understanding of the Semantic Web and its 
standards in order to explain why and how an application should be set up using semantic web 
standards. The student should also be able to explain and defend the choices made in the ontology 
engineering process.

Learning skills: The student should be able to study the literature about semantic web 
developments.

Study material: 
•	 A Semantic Web Primer, Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, 

MIT Press, ISBN: 9780262018289 (third edition).
•	 Syllabi and scientific papers about ontology engineering.

Recommended Literature: The documents on the site of the World Wide Web Consortium (W3C).

Examination: Practical exercises and a written exam at the end of the course. The grade is for 70% 
determined by the written exam and for 30% by practical assignments. Participation in the practical 
is required for receiving a grade.

ECTS: 4

Recommender systems (KEN3160) 

Examiner: Prof. Dr. Nava Tintarev & Dr. Francesco Barile

Desired Prior Knowledge: Natural Language Processing, Human Computer Interaction & Affective 
Computing 

Prerequisites: Machine Learning

Description: Recommender systems play an important role in helping to mediate many of our 
everyday decisions and choices, including the music we listen to, the news that we read, and even 
the people that we date. They do this by learning from our past interactions, inferring our interests 
and documenting our preferences. To make the right suggestions at the right time recommender 
systems must not only understand our preferences but also our current needs and perhaps our 
immediate intent. Thus, the core focus of most recommender systems is devoted to profiling users 
and matching items based on these profiles and current context.

Much of the research to date on recommender systems has focussed on the engineering and 
evaluation of core recommendation algorithms. Researchers have developed a variety of approaches 
to harness different forms of preference data in the pursuit of more accurate recommendations. For 
example, researchers have used simple ratings for collaborative, rich meta-data for content-based 
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methods, and even the opinions and sentiment expressed within user-generated reviews.
When evaluating recommender systems, there has been a heavy emphasis on measuring the 
accuracy of suggestions, or the error of predictions. However, in practice it is important to consider 
evaluation metrics beyond accuracy, such as diversity, novelty, and serendipity. This in turn 
has led to increased attention being given to the nature of the interactions between users and 
recommender systems, and the influence that the user interface and interaction style can have on 
user behaviour and the overall recommendation experience. This course focuses on:
•	 Non-personalized and Stereotype-based Recommender Systems
•	 Classical recommender systems algorithms, e.g., Content-based Filtering, Collaborative-based 

Filtering
•	 Offline Evaluation e.g., protocols, criteria, metrics
•	 User-centered evaluation 
•	 Interfaces and interaction in Recommender systems, e.g., explanations and conversational 

recommender systems
•	 Group Recommender Systems
•	 Ethics, bias, and fairness in recommender systems
•	 Advanced methods, e.g., Matrix Factorization, Hybrid recommender systems, Contextual 

Recommender systems

Knowledge and understanding: Students will be able to explain concepts from recommender 
systems, such as the difference between different recommendation methods and can identify 
advantages and limitations of these methods. Students will also be able to explain one advanced 
method or topic suitable for progression to a Master level program in Data Science or Artificial 
Intelligence.

Applying knowledge and understanding: Students will be able to apply ideas, methods, and tools for 
recommender systems that are suitable for a given domain. Students will be able to solve problems 
and design analytically, to comprehend (design) problems and abstract their essentials, to construct 
and develop logical arguments with clear identification of assumptions and conclusions. Students 
will develop the ability to transpose academic knowledge and expertise into (inter)national societal, 
professional and business contexts.

Making judgements: Students will gain acquaintance with the standards of academic criticism. 
Students will develop an awareness of, and responsibility for ethical, normative and social 
consequences of developments in science and technology, particularly resulting from Data Science 
and Artificial Intelligence.

Communication: Students will develop academically and internationally appropriate communicative 
skills, i.e., the ability to give effective oral presentations, both formally and informally, and 
understand and offer constructive criticism of the presentations of others. 

Learning skills: Students will be able to reflect on their own working methods, and own readiness to 
take the necessary corrective action.

Study material: Course notes, required reading of scientific articles.

Recommended Literature: Jannach, Dietmar, et al. Recommender systems: an introduction. 
Cambridge University Press, 2010. Additional research papers and online articles

Exam: The assessment is composed by three components: Individual “Review” of Scientific Papers 
(15%), Practical group assignment (30%), and Written exam (55%). The three components are 
mandatory (e.g., A grade of at least 5.5 for each component is necessary in order to pass the exam).

ECTS: 4

53 - Student Handbook



Robotics and Embedded Systems (KEN3236)

Examiner: Dr. Rico Möckel.

Desired prior knowledge: Calculus, Linear Algebra, Machine Learning.

Prerequisites: Procedural Programming and Objects in Programming

Description: Nowadays, a variety of products require that algorithms from data science and artificial 
intelligence are adapted to and implemented in robotic and embedded systems. Applications that 
heavily rely on intelligent robotic and embedded systems include self-driving cars, autonomous 
drones, intelligent industrial robots in (semi-) autonomous factories, smart phones, intelligent 
medical devices, and distributed intelligent embedded devices in smart homes. 

In this course, students receive an introduction to the fields of robotics, embedded systems, and 
real-time control. Students obtain an overview of state-of-the-art intelligent robotic and embedded 
systems in academia and industries. Students gain hands on experience in programming embedded 
robotic systems using embedded processors and a modular robotic system developed at  the 
Department of Advanced Computing Sciences. Students learn about communication standards 
for embedded systems, sensors, and actuators. Student practise and strengthen their expertise in 
data science and knowledge engineering by applying mathematical methods for controlling robotic 
systems: They study control techniques including PID control, forward and inverse kinematics as 
well as locomotion control and learning using central pattern generators. The course concludes with 
a robot competition where students build and program robots using a modular robotic system.

Knowledge and understanding: Students obtain knowledge in designing, building, and 
programming robotic and embedded systems. Students learn how to apply mathematical 
concepts like dynamic systems for controlling robotic systems in real-time. Students further obtain 
knowledge about sensors and motor control and study the application of machine learning and 
mathematical methods for learning and optimizing control parameters. Students receive training in 
the programming language C - the most popular languages for programming microcontrollers.

Applying knowledge and understanding: After successful completion of this course, students 
can analyse, apply, implement, and validate control techniques in embedded and robotic systems 
with and without real-time constraints. Students can apply techniques from machine learning, 
search, and optimisation to obtain parameters for embedded control systems as required in many 
professional academic and industrial applications.

Making judgements: Students learn to judge where real-time systems are required and embedded 
systems can be beneficial. Students further learn to critically analyse the use of robotic systems in a 
variety of scenarios and to make design choices for robotic and embedded systems. By introducing 
students to a variety of state-of-the-art robotic systems, the course lays the foundation so that 
students can process professional literature in robotics and embedded
systems.

Communication: Students will be able to 1) discuss robotic and embedded systems professionally 
and critically, 2) plan, discuss, implement, and validate projects in robotics and embedded, 3) present 
the results of project assignments in form of video, and to 4) critically analyse and explain control 
techniques for robotic systems to a general and professional audience.

Learning Skills: Students are able to autonomously and critically reflect upon the abilities and 
limitations of robotic and embedded systems in order to keep up with new developments in the 
field. Students can further assess the capabilities and limitations of their own solutions to a control 
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or machine learning problem in robotics, and to identify follow-up literature, which goes beyond the 
scope of the material presented in the course. 

Study material: Course material including video tutorials will be provided during the lectures.

Assessment:  The final course grade is 80% of the final written “closed-book” exam grade plus 20% 
of the assignments grade.

ECTS: 4

Introduction to Quantum Computing (KEN3241) 

Lecturer & Examiner: Dr. Menica Dibenedetto 

Prerequisites: Linear Algebra. 

Desired prior knowledge: Theoretical Computer Science, Data Structures & Algorithms. 

Description: This course offers an introduction to the interdisciplinary field of quantum 
computation. The focus will lie on an accessible introduction to the elementary concepts of 
quantum mechanics, followed by introducing the mathematical formalism and a comparison 
between computer science and information science in the quantum domain. The theoretical 
capability of quantum computers will be illustrated by analysing fundamental algorithms of 
quantum computation and its potential applications. 

Quantum technology has become one of the most prominent interdisciplinary fields of recent 
research. This course will focus on introducing the mathematical concepts underpinning quantum 
computation, and on explaining how this new computational paradigm might potentially offer 
possibilities beyond the scope of conventional computers. Topics that will be introduced and 
discussed include: (i) most common models of quantum computation (e.g., quantum circuits and 
measurement-based quantum computing). (ii) An exposition of the machinery borrowed from 
quantum mechanics, such as superposition of states, quantum entanglement, (de)coherence etc., 
which gives rise to the potential speed-up of quantum algorithms over their classical analogs. (iii) 
Some of the most common quantum algorithms (searching, factoring etc.) and protocols (quantum 
teleportation, EPR paradox). The course will finish with an exposition of potential applications 
of quantum computation and algorithms in other fields (such as security/cryptography, AI, 
optimization etc.)

Important: no prior knowledge in quantum mechanics is assumed or required, and all necessary 
concepts will be introduced and motivated from a mathematical and theoretical computer science 
point of view. Possible quantum architectures and/or related hardware issues will not be discussed. 

Knowledge and understanding: By the end of this course, students are able to understand the 
differences between classical and quantum computation: Where is the computational power of 
quantum machines coming from? What are the limits of this new computational paradigm? What 
does the term “quantum supremacy” mean and why it is important? How likely is it ever to be 
achieved and what would it mean for our current understanding of the computational landscape? 

Applying knowledge and understanding: Students are able to understand some of the most famous 
quantum algorithms, and to demonstrate where their power comes from. They will be able to judge 
how this potential computational power can be leveraged, and how it can be applied to other fields 
in a beneficial way. 
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After successful completion of this course, students are able to understand and use the 
mathematical framework of quantum computing to solve computational problems.

Making judgements: Students are able to judge and identify the settings where the potential 
quantum power might be beneficial and how they can leverage this. Students will further be able to 
analyse simple quantum algorithms for different computational problems. 

Communication: Students are able to discuss quantum computation critically and judge not only 
its benefits but, equally important, its shortcomings. During lectures and practical assignments, 
students will be exposed to a different way of thinking about computation that will also enhance 
their understanding on classical computation. 

Learning Skills: Students are able to critically read and understand scientific papers on quantum 
computing. To explain and analyse quantum algorithms described in quantum circuit or 
measurement-based quantum computing models. Finally, to relate quantum complexity classes to 
the classical ones. 

Recommended Study material: 
•	 Isaac Chuang, Michael Nielsen, “Quantum Computation and Quantum Information”, 10th 

Anniversary Edition, Cambridge University Press, 2011.
•	 N. David Mermin, “Quantum Computer Science: An Introduction”, 1st Edition, Cambridge 

University Press, 2007 
Course material will be also provided during the lectures. 

Exam: The final course grade is 100� of the final written “closed-book” exam grade.

ECTS: 4 

Period 3.2

Computer Security (KEN2560) 

Coordinator & examiner: Dr. Bastian Küppers

Desired prior knowledge: Procedural Programming, Objects in Programming, Data Structures and 
Algorithms, Software Engineering, Databases 

Prerequisites: None.

Description: Computer security is the process of securing information systems against unauthorized 
access. As information systems have become mandatory in the modern world, coupled with 
the increased frequency of security incidents, organizations now recognize the need for a 
comprehensive security strategy. The course will introduce a wide range of topics in computer 
security and online privacy. The main objective of the course is to cultivate a security mindset by 
discussing various attack techniques and appropriate defenses. The topics that will be explored are 
information security (cryptography, cryptoanalysis), software security and network security, as well 
as designing secure systems. The class consists of lectures in which several computer security issues 
will be discussed. In parallel, there are assignments in which the students have to solve some of the 
most important issues discussed during the lectures.

Knowledge and understanding: Students will gain an in-depth understanding of computer security 
fundamentals and their applications in real world scenarios. In detail, they will understand the 
principles of a secure computer system and the potential attacks that could compromise it.
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Applying knowledge and understanding: After completing the course, the students will be able to 
design and develop secure systems on their own.

Making judgements:  By understanding the fundamentals of computer security and by working 
on the assignments, the students will be able to understand and spot mistakes in the security of 
computer systems.

Communication: Students will be able to explain the principles of computer security to specialists 
and non-specialists. They will be able to explain if the design of a system is secure or not and how 
the system can be improved.

Learning skills: Students will be able to read and interpret scientific literature on computer security 
that goes beyond the scope of the course, and independently design. They will be able to design and 
implement secure computer systems, to avoid common mistakes, and to work on real-world security 
problems.

Study material: Lecture slides, Source code examples

Assessment: Group project (20%)

Exam: Written final exam (80%) 

Recommended literature: Pfleeger & Pfleeger: Security in Computing

Additional literature:
•	 Goodrich & Tamassia: Introduction to Computer Security
•	 Buchmann: Introduction to Cryptography
•	 Tanenbaum & Bos: Modern Operating Systems

ECTS: 4

Software and Systems Verification (KEN3150) 

Coordinator & examiner: Dr. Pieter Collins

Desired prior knowledge: Reasoning Techniques, Theoretical Computer Science

Prerequisites: None.

Description: Have you ever written a program with a bug in it? Then this course is for you! Software 
verification tools can check whether your program works by showing that it correctly satisfies 
its specification, or finds a case in which it can go wrong. Unlike unit testing and other software 
validation methods, verification tools use formal methods to rigorously prove correctness. Similar 
techniques can be used to show that (mathematical models of) cyber-physical robotic systems work 
as designed.

In this course, we will start by and introducing the main notions of object-oriented program 
verification, including pre- and post-conditions for methods, and class invariants. We shall use Hoare 
logic to convert programs and their specifications into logical statements to be proved. We shall 
apply these techniques to the verification of simple programs written in Java.

In the second part of the course, we consider formal models of software and systems as 
labelled transition systems (automata), using temporal logics for specification, and consider 
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the fundamental algorithms for verification. We shall apply these algorithms to simple discrete 
verification problems, such as vending machines and communications systems, modelled using a 
formal system specification language. Finally, we will look at simple continuous systems, such as 
robots and electronic systems, and show how to verify these using rigorous numerical methods 
based on interval arithmetic.

Knowledge and understanding: Students are able to recognise the difference between formal 
verification and validation, and distinguish rigorous numerical methods, notably how interval 
arithmetic differs from floating-point. They can explain the various kinds of annotations used in 
program specification, state the deduction and precondition rules of Hoare logic, and interpret 
linear temporal logic formulae. 

Applying knowledge and understanding: Students are able to write formal specifications for simple 
programs. Furthermore, students can use Hoare logic to reduce program specification to first-
order logic statements, and justify these. Students are able to construct Büchi automata accepting 
temporal logic formulae and can apply interval and affine arithmetic for verifying properties of 
continuous systems. Moreover, students are able to write annotations for object-oriented software, 
use software for model-checking discrete systems and use software for rigorous numerics to verify 
safety of simple continuous systems.

Making judgements: Students are able to determine the most appropriate modeling framework and 
verification tools for a given problem.

Communication: Students can write and read formal specifications and can discuss informal design 
goals and their translation into formal specifications.

Learning skills: Students will critically reflect on their own human reasoning and the potential of 
digital computers to perform provably-correct automated reasoning.

Study material: Course notes.

Recommended literature: 
•	 J.B. Almeida, M.J. Frade, J.S. Pinto & S. Melo de Sousa, “Rigorous Software Development: an 

Introduction to Program Verification”, Springer, 2011.
•	 C. Baier & J.P. Katoen, “Principles of Model Checking”, MIT Press, 2008.
•	 L. Jaulin, M. Kieffer, O. Didrit & E. Walter, “Applied Interval Analysis”, Springer, 2001.

Exam: Written exam, closed book (100%).

ECTS: 4

Logic for Artificial Intelligence (KEN3231)

Examiner: Prof. Dr. ir. Nico Roos.

Desired prior knowledge: Knowledge of propositional and predicate logic.

Prerequisites: The first year bachelor course: Logic (KEN1530).

Description: Logics form the formal foundation of knowledge representation and reasoning, 
which is a fundamental topic in Artificial Intelligence. Logics play a role as an analysis aid and as a 
knowledge-representation formalism. Moreover, the semantics of logics enables us to evaluate the 
intended meanings of knowledge representation formalisms, and the correctness and completeness 
of reasoning processes.
Humans make assumptions in their day-to-day reasoning. Examples of reasoning with assumptions 
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are: common sense reasoning, model-based diagnosis, legal argumentation, agent communication 
and negotiation, and so on and so forth. The assumptions humans use in their reasoning may be 
incorrect in the light of new information. This implies that conclusions may have to be withdrawn 
in the light of new information. Therefore this form of reasoning is called non-monotonic reasoning 
and the underlying logics are called non-monotonic logics. 

The course will cover model-based diagnosis as an application of reasoning with assumption, 
standard logics extended with defeasible rules, argumentation systems, the semantics of reasoning 
with assumptions and defeasible rules, and closure properties of the reasoning systems.

Knowledge and understanding:
•	 The student should be able to describe non-monotonic logics and argumentation systems.
•	 The student should be able to identify the logic underlying specific forms of knowledge 

representation. 
•	 The student should be able to describe and discuss the semantic of non-monotonic logics.

Applying knowledge and understanding: 
•	 The student should be able analyze important properties of practical formalisms for knowledge 

representation and reasoning.
•	 The student be able to apply non-monotonic logics and argumentation systems to practical 

problems

Making judgements: 
•	 The student should be able to judge whether specific knowledge representation formalisms are 

able to represent the intended meaning of the knowledge to be represented.
•	 The student should be able to analyze whether conclusions derived from a knowledge 

representation are correct and complete.

Communication:
•	 The student should be able to explain how logic can be used as a tool for analyzing a knowledge 

representation problem.
•	 The student should be able to explain issues involved in the handling assumptions in a 

knowledge-representation.

Learning skills: 
•	 The student should be able to study autonomously the literature describing the applications of 

logics for knowledge representation and reasoning.

Study material: Syllabi.

Recommended Literature: A syllabus and scientific literature.

Examination: Written exam at the end of the course. A bonus of 1.0 point can be earned by a series 
of bonus assignments. 

ECTS: 4
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Parallel Programming (KEN3235) 

Examiner: Dr. Christian Terboven

Prerequisites: Procedural Programming, Objects in Programming, Data Structures and Algorithms.

Description: Parallel programming introduces the students to the paradigm of parallel 
computing on a computer. Nowadays almost all computer systems include so-called multi-core 
chips. Hence, in order to exploit the full performance of such systems one needs to employ parallel 
programming. 

This course covers shared-memory parallelization with OpenMP and java-Threads as well as 
parallelization with message passing on distributed-memory architectures with MPI. The course 
starts with a recap of the programming language C followed by a brief theoretical introduction 
to parallel computing. Next, the course treats theoretical aspects like MPI communication, race 
conditions, deadlocks, efficiency as well as the problem of serialization. This course is accompanied 
by practical labs in which the students have the opportunity to apply the newly acquired concepts.  
After completing this course students will be able to write parallel programs with MPI and OpenMP 
on a basic level, and deal with any difficulties they may encounter

Knowledge and understanding: Students recall the basic concepts for parallel programming and 
recognize important parallelization patterns.

Applying knowledge and understanding: Students are able to write parallel software code using 
MPI, OpenMP, and Java Threads. 

Communication: Students are able to explain why a specific pattern is adequate for a given 
problem.

Learning Skills: Students are able to study autonomously the literature describing parallel 
programming in order to comprehend important details and problems of the field.

Study material: Course notes and several codes will be provided online.
Recommended literature: Parallel programming with MPI; Peter Pacheco; Morgan Kaufmann (1996);  
(a very early revision is available online)

Exam: Written exam.

ECTS: 4

Large Scale IT and Cloud Computing (KEN3239)

Examiner: Dr. Marius Politze & Dr. Thomas Eifert

Desired Prior Knowledge: Procedural Programming, , Databases

Prerequisites: none

Description: The course offers a comprehensive introduction to the field of scalable IT systems, so-
called “Big IT”, and cloud computing. After a technical introduction to the available methodologies 
of setting up and running scalable systems, use cases are presented. These use cases emphasize 
the correlation of the processes and requirements of large institutions and possible technical 
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solutions. A special focus is put upon the question which technological platform is best used for 
which use case as well as process aspects of scaling. Security aspects specific to cloud computing are 
discussed along the use cases. Cloud computing, as a special case of scalable IT, is discussed in detail. 
Different cloud providers are presented and evaluated in the context of university requirements, i.e. 
requirements posed by research and teaching processes.

Knowledge and understanding: students acquire an overview of existing technologies for scalable 
systems, and specific security requirements for the different use cases.

Applying knowledge and understanding: Students are able to understand scalability and are able 
to set up and use a scalable IT system. In addition, students are able to evaluate high scalable IT 
solutions in terms of benefits and security risks.

Making judgements: Students are able to analyze the requirements of a specific use case and can 
decide which technology is best used for that case of application.
 
Communication: students are able to communicate about scalable IT systems and specific security 
requirements.

Learning skills: Additionally, students are able to analyse the interdependencies between large 
organizations, processes and IT solutions - taking into account security-related aspects - and to 
design suitable solutions using cloud offerings.

Study material: Lecture notes

Exam: Assignments and Project

ECTS: 4

Introduction to Bio-Informatics (KEN3440)

Examiner: Dr. Rachel Cavill.

Desired Prior Knowledge: Procedural Programming, MatLab.

Prerequisites: None.

Description: This course presents a general introduction to the fundamental methods and 
techniques of bioinformatics in biomedical and biological research. The objective is that the 
students will acquire a general understanding of bioinformatics methods at the algorithmic 
level and will therefore be able to read and understand publications in this field, and – to some 
extent – apply their knowledge to concrete biological problems. This relates to the major areas 
of bioinformatics like sequence alignment, phylogenetic analysis, gene finding, and omics data 
analysis. This course consists of a series of closely related lectures and computer classes, based on 
relevant case-studies using real data. In the lectures the main theoretical aspects are presented. 
In the computer practicals, the students work to analyse real data using the techniques they 
have encountered. By extensively exploring the case study, the students acquire a thorough 
understanding of  the subject.

Knowledge and understanding: Students should be able to perform common analyses on both 
sequence data and numeric data from omics experiments. This includes sequence alignment, 
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building phylogenetic trees, applying hidden Markov models, detecting differentially expression and 
performing pathway analysis. 

Applying knowledge and understanding: For all the above topics students should be able to 
demonstrate the algorithms on paper with simple examples and apply the algorithms appropriately 
on realistic datasets using a computer.

Making judgements: After successful completion of the course, students will be able to judge the 
use, quality, and correctness of different bioinformatics algorithms and results.

Communication: After successful completion of the course, students will be able to judge the use, 
quality, and correctness of different bioinformatics algorithms and results.

Learning Skills: After successful completion of the course students will be able to independently 
read bioinformatics literature to further their knowledge.

Study material: Introduction to Computational Genomics, A Case Studies Approach,
Nello Cristianini, Matthew W. Hahn, Cambridge University Press, 2006, Hardback and Paperback 
(ISBN-13: 9780521856034 | ISBN-10: 0521856035).

Exam: Written exam (50�) + assignments (50�).

ECTS: 4

Project 3-1 (KEN3300)

Examiners: Dr. Katharina Schneider and Dr. Rico Möckel

Prerequisites: Project 2-1.

Description: Project 3-1 consists of two distinct paths: projects at the Department of Advanced 
Computing Sciences with focus on university research and DSAI/BSSC/BISS projects with focus on 
applied research proposed by companies that are affiliated with BSSC (Brightlands Smart Service 
Campus). The DSAI/BSSC/BISS projects are facilitated in cooperation with BISS (Brightlands Institute 
for Smart Society). In the first week of period 1, students indicate their preference by ranking these 
projects. Groups are created by means of an algorithm that minimizes regret and allocates students 
to their most preferred options.

About the projects at the Department of Advanced Computing Sciences: Students work in small 
groups, guided by teachers of the subjects concerned and by the tutors. During the project, students 
apply their knowledge in data science, and artificial intelligence to robotic and other intelligent and 
autonomous systems. Depending on their chosen specialization within their project group, students 
study and search for solutions in at least one, typically in multiple of the following fields: control, 
machine learning, computer vision, signal processing, human-computer/robot interaction, multi-
agent and distributed systems, optimization, data visualization as well as modelling and simulation. 

About the DSAI/BSSC/BISS projects: Students participate in small groups and receive guidance 
from a tutor, a teacher with knowledge of the subjects concerned, and a content expert from 
the company. Furthermore, the students receive business related skills such as creating business 
presentations from a teacher at BISS. Students learn how to apply their knowledge in data science, 
and artificial intelligence to solve real-world problem that arise in a professional environment, and 
how to interact with a client from the industry.
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Knowledge and understanding: Students gain the opportunity to specialise in a variety of methods 
in artificial intelligence and data science. Students obtain knowledge in designing, building, and 
programming complex system solutions. Students learn how to conduct professional research by 
using appropriate research methodologies.

Applying knowledge and understanding: Students learn to apply complex methods from artificial 
intelligence and data science to real-world applications. Students furthermore learn how to apply 
domain-specific tools to solve real-world challenges proposed by companies or driven by societal 
needs.

Making judgements: Students learn how to analyse complex challenges and to judge whether these 
can be targeted with methods from artificial intelligence and data science. Students further learn 
how to select promising solutions and approaches in a methodological way.

Communication: Students learn and practice how to communicate with stakeholders to understand 
their requirements and specific needs regarding complex real-world challenges. Students further 
learn how to communicate their plans in targeting challenges, how to communicate intermediate 
and final results and how to obtain feedback in a structured way to further enhance their problem-
solving approaches.

Learning skills: After competing the project course, students will be able to autonomously and 
critically reflect on their knowledge and skills for solving complex real-world challenges, to identify 
gaps in their knowledge and skills and to identify professional literature and other resources to fill 
these gaps.

Study material: Project book and project descriptions. Additional study material will be provided for 
the individual project topics.

Assessment: The project will be assessed based on the (scientific) insights, developments and 
professional documentation generated by the student groups. 

Skill classes: 
•	 Group CV Check: during this class, you will receive tips and feedback on how to write a 

professional résumé (i.e. Curriculum Vitae). 
•	 Networking skills: during this class, you will learn hands-on tips to build an interesting network 

to support you in your search for a job or internship. 

Both of the above classes are provided by instructors of the UM Career Services.

ECTS: 6
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Period 3.4 

Operations Research (KEN3410)

Examiner: Dr. Steven Kelk & Dr. Barbara Franci

Desired Prior Knowledge: Linear Programming.

Prerequisites: None.

Description: Operations Research (OR) is concerned with the best way to assign scarce resources 
to competing activities. It is for this reason an important branch of mathematics that is widely 
used in industry to support economically efficient decision making, but also in other application 
areas where discrete or stochastic optimization has a central role. In this course we will explore 
a number of themes both within deterministic OR (where all the problem data is known at the 
beginning) and stochastic OR (decision problems involving uncertainty and randomness). Themes 
within deterministic OR include the network simplex method (used for solving minimum-cost flow 
problems), integer linear programming and non-linear programming. Stochastic themes include 
queuing systems, Markov chains and Markov decision problems. As background students will be 
introduced to the methodological similarities and differences between OR and data science.

Knowledge and understanding: Students can recognize, classify and distinguish some of the major 
types of OR models, i.e. transportation and network optimization models, integer and non-linear 
programming, Markov chains and Markov decision problems, queueing models.

Applying knowledge and understanding: Students can apply a wide variety of algorithms to 
calculate solutions for problems of the types mentioned above. Students will be able to translate 
simple real-world/industrial optimization problems into a format suitable for (variously) the 
transportation simplex, network simplex and integer linear programming.

Making judgements: Students can explain advantages and disadvantages of different models and 
algorithms. They are able to judge the correctness of solutions presented.

Communication: Students can explain and defend their solution methods.

Learning skills: Students will be able to critically reflect upon the scope and limitations of the 
learned models, and be able to identify follow-up literature describing paradigms, models and 
algorithms that go beyond the scope of the course.

Study material: Hillier & Lieberman (2010 or 2015): Introduction to Operations Research (9th or 
10th edition). McGraw Hill, ISBN 978-007-126767-0 or ISBN 9781259162985. Support for the 11th 
edition is forthcoming.

Recommended literature: None.

Exam: Written exam, worth 100� of the credit.

ECTS: 4
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Intelligent Systems (KEN3430)

Coordinator & examiner: Dr. ir. Kurt Driessens 

Tutor(s): t.b.d. 

Prerequisites: None.

Description: The course offers an introduction to intelligent systems, their components, design 
issues and possible development paths. Based on the metaphor of a computational agent (that 
is, a software program or a robot which acts and interacts flexibly and autonomously in order 
to achieve some goal), basic concepts and methods from agent technology are discussed. Topics 
covered are the concept of artificial intelligence, expert systems, characteristics of an agent and 
agent architectures, agent cooperation and competition among agents, behaviour-generation and 
-learning with the added complexity of a multi-agent environment, agent oriented world views 
and possible future paths to general artificial intelligence. An emphasis is made on the complexity 
of interacting systems, both between different agents, but also between the subsystems of a 
single agent. In the practical part of the course, the students build up their experience with the 
implementation of a number of different types of agents. 

Knowledge and understanding: Students are able to compare and discuss benefits and drawbacks 
of a number of different agent technologies. They can also explain the complexities arising from 
interactions between multiple techniques within a single agent, and the interactions between 
agents and systems.

Applying knowledge and understanding: Students will be able to implement of a number of 
different types of agents architectures and agent-subsystems and agent behavior generation 
techniques.

Making judgements: The student will be able to judge whether it is beneficial to use intelligent 
systems technology over other approaches for handling a given problem, and which agent 
architectures might fit best.

Communication: The student will gain a working knowledge of intelligent system terminology and 
will learn to motivate his/her choices concerning the application of intelligent technology.

Learning Skills: Students have to reflect upon their knowledge and recognize the need for continued 
learning as they are confronted with the complexities involved with applying the knowledge gained 
in their bachelor studies and linking individual techniques into a working system. 

Study material: Course slides are shared as a support for the lectures; supplementary material 
consisting of research papers and book chapters are provided through the student portal.

Assessment: Assessment is based on a 20% grade for daily work and 80% for a written exam at the 
end of the course.

Exam: The exam consists of a combination of multiple choice questions and open-ended questions.

Additional literature: Artificial Intelligence: A Modern Approach, Russel and Norvig.

ECTS: 4
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Project Skills period 3.1 & 3.2: 
Group CV Check (online or on-site): during this class, you will receive tips and feedback on how to 
write a professional résumé (i.e. Curriculum Vitae). 

Networking skills (online or on-site): during this class, you will learn hands-on tips to build an 
interesting network to support you in your search for a job or internship. 
Both of the above classes are provided by instructors of the UM Career Services.

Study material: Period book 3.1-3.3. Maastricht University.

Exam: The project will be assessed based on report, product, presentation and project management.

ECTS: 6

Data Analysis (KEN3450)

Examiners: Dr. Jerry Spanakis

Desired Prior Knowledge: Calculus, Linear Algebra, Mathematical Modelling & Simulation, Machine 
Learning, Introduction to Computer Science 1 and 2.

Prerequisites: None

Description: This course aims at preparing students on how to be a successful “data scientist”. The 
crucial processes of inspecting, cleaning, transforming, restoring and preparing data for modelling 
are tackled. Different types of data are going to be explored through case studies (“clinics”) that a 
modern “data scientist” has to deal with. Furthermore, several techniques from machine learning 
and mathematical modelling (multiple regression, classification, tree-based models, dimensionality 
reduction, etc.) are presented from the data analysis perspective and students learn how to apply 
these techniques to different types of data. Finally, the cornerstone of data analysis is presented: 
correct communication of the analysis outcome (storytelling, visualization, etc.).

Knowledge and understanding: Students are able to illustrate and explain data analysis and 
machine learning techniques with emphasis on modelling, and to give examples of different 
domains where data analysis can be applied

Applying Knowledge and understanding: Students are able to examine datasets using techniques 
learned in course, and to experiment with different techniques for data modelling

Making Judgements: After successful completion of the course, students are able to 1) judge the 
quality of data (of any kind), 2) to justify and rank which techniques should be applied in each 
problem and 3) to assess results of data analysis process 

Communication: Students are able to present the results of different stages of data analysis to 
specialists and non-specialists and are able to decide on the correct communication medium 
(scientific, verbal and visual) of the analysis outcome

Learning Skills: After successful completion of the course, students are able to suggest options 
for tackling different datasets combining verbal, numerical/scientific and visual descriptions, 
also taking into account the context cases (e.g. business, academic) or the domain of application. 
Furthermore, students are able to formulate data descriptions based on their characteristics and 
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can suggest options for modelling data and perform basic temporal analysis and dimensionality 
reduction

Study material: Jupyter notebooks (and limited slides)

Recommended literature: Selected chapters from the following textbooks:
•	 A. Downey, Think Stats: Exploratory Data Analysis 
•	 James, G., Witten, D., Hastie, T., Tibshirani: An Introduction to Statistical Learning (with 

Applications in R)
•	 J. Vanderplans, Data Science Handbook
•	 S. Skiena, The Data Science Design Manual
•	 J W. McKinney, Python for Data Analysis 
•	 Chris Albron, Machine Learning with Python Cookbook 

Exam: Open-book Digital Exam 70%, Practical assignment 30% 

ECTS: 4

Bachelor’s Thesis (KEN3500)

ECTS: 18

Bachelor’s thesis Data Science and Artificial Intelligence
At the end of the Bachelor’s study in Data Science and Artificial Intelligence each individual 
student has to write a thesis manuscript. This thesis manuscript must be designed as a scientific 
article of 8 pages using a standard (LaTeX) design. Students are expected to conduct a pro-active 
and independent research on their topics. This includes the search and reading of related work. 
The topics must be discussed with the potential thesis supervisor(s) and a research plan must 
be submitted to and approved by the Board of Examiners as an initial step. The thesis has to be 
accompanied by relevant attachments and software. Students will present the thesis in a public on-
site conference.

This means that a strict submission form will be used. In order to start working on the thesis, a 
student is required to have obtained at least 140 ECTS (among which are 60 credits of the first year, 
and 40 ECTS of the second year).

General procedure
Below is an indication for these phases. A bachelor’s thesis coordinator will supervise the entire 
procedure and schedule. Please note there is also an option to start the trajectory in September. For 
more information ask the thesis coordinator.

November
Phase 0: Thesis Topic meeting 
Potential topics and research fields will be presented. 

January
Phase 1: Topic selection
During the skills class, each student selects a topic (and problem statement) and finds two 
appropriate prospective thesis examiners. Every student hands in a signed bachelor’s project plan to 
the bachelor’s thesis coordinator. If the Board of Examiners approves the thesis plan, the examiners 
are appointed.
Periods 3.4-5: February - May
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Phase 2: Research
In this period every student conducts his/her own research. This will preferably be guided in groups 
by the thesis supervisor. Further two seminars will be organised during which the students present 
their progress. 

Phase 3: Writing
Parallel to the research, a scientific article is written.

Period 3.6: June
In Period 6, the research is finished and the first versions of the thesis manuscript is expected (first 
submission). The first thesis examiner will evaluate the thesis manuscript and gives a first reaction 
within around a week. The second examiner will also evaluate the paper during this week. The 
second and final submission will take place at the end of the second week of period 3.6 (concrete 
dates will be announced).

Phase 4: Preparation for presentation
In the second week of period 3.6, the preparation for the final presentation will start for every 
student individually. The presentations will be created with PowerPoint and have a maximum 
length of 10 minutes

Phase 5: Presentation
The bachelor’s theses will be presented in the third week of period 3.6 in a scientific conference 
setting at the university. The presentations have a maximum length of 15 minutes per student 
(including questions). The conference is open to all students and teaching staff from Data Science 
and Artificial Intelligence and anyone else who might be interested. The final decision on the grade 
for the bachelor’s thesis will be made shortly after the presentations. A special bachelor’s thesis 
coordinator will supervise the phase. 

Re-sit: In case the student fails to present his/her work at the Bachelor conference, the student gets 
one opportunity to defend his/her work at the next bachelor conference. If the student does pass at 
any of those two conferences, the student has to select a new topic and submit a new thesis plan. 
For students not finishing at the June Conference there is one re-sit possibility in a Conference at 
the end of August. 

Requirements for the bachelor’s thesis project
For the bachelor’s thesis, every student has to conduct a short scientific research project. This can be 
an empirical as well as a theoretical research. The topic for the research project is open, as long as it 
fits into the Data Science and Artificial Intelligence program.
The department will offer a list of potential research topics. The topic and the research questions 
have to be approved by the examiners and the Board of Examiners. To this end, the student will 
create a bachelor’s project plan using the form provided by the Board of Examiners. This plan will 
be signed by the student, the prospective thesis examiners and then handed in to the bachelor’s 
thesis coordinator. It is possible to execute the bachelor thesis project as an external training 
period. This should be well defined in the bachelor’s thesis plan. In this case, the plan should also 
include the name of the external institute or company, the name of the external supervisor, the 
size of the project and any agreements about compensation. The plan should also be signed by the 
external supervisor. In principle, there should be no confidentiality agreements for a thesis, and 
staff members cannot be expected to commit to these. The external research cannot start before 
period 3.5 due to courses in period 3.4. When not selecting a topic offered by the department, or 
when wanting to do a thesis with the involvement of an external party, it is advisable to start the 
preparations and requesting permission three months in advance. The research needs to be original 
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in such a way that the thesis supervisor is convinced that this research has not been done before. 
The research also needs enough depth and still it must be possible to finish it in the set amount of 
time. Every thesis is an individual work.

Requirements for the bachelor’s thesis manuscript

Content aspects
The thesis manuscript describes the cause, research question, approach and results of the research. 
This has to be done in a clear, structured and scientific manner which includes:
•	 a clear introduction in which the context and research questions are presented;
•	 a clear conclusion, based solely on the already used thought out principles and derived results;
•	 a clear line is shown between problem statement, methods, and the derived results;
•	 a motivation of the methods followed;
•	 an adequate description of the methods followed;
•	 an honest, clear, and concise description of the derived results, if necessary using tables;
•	 a discussion of the results;
•	 the usage of relevant and recent literature;
•	 the correct usage of references;
•	 the adequate usage of the literature for the reasoning in the thesis manuscript.

Design aspects
The number of pages of the thesis is 8, in the designated LaTeX format, including images and 
references. This thesis should at least contain:
• title;
• author;
• abstract;
• one or two keywords;
• list of references;
• page numbers.

It goes without saying that the correct scientific references are used for used resources (by using 
the designated BiBTeX reference style). Images and tables are accompanied by an index and caption. 
Mathematical formulas, definitions, etc. have to be properly designed and numbered. The start and 
end of mathematical formulas have to be properly defined.

Language aspects
The thesis manuscript has to be written in Dutch or English, considering correct spelling, syntactical 
structure of sentences and structure of content in paragraphs. The target audience is fellow Data 
Science and Artificial Intelligence students. Any jargon and/or abbreviations have to be
explained unless they are common knowledge for this audience (e.g. CPU).

Citations
It is allowed to use several short citations with a maximum length of two sentences.
These citations have to be clearly referenced and have to be typographically distinguishable (that 
is, citations are placed in quotes). Non-allowed citations or missing references will result in an 
unsuccessful result.

Assessment
The assessment will take place based on the contents and design of the thesis, the presentation of 
this thesis and the process. The weighing of the various aspects is up to the examiners.

2.4 Curriculum of the First Year of the Bachelor Programme Computer Science
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Course year 1: ECTS

Period 1.1 Introduction to Computer Science (BCS1110)
Procedural Programming (BCS1120)
Discrete Mathematics (BCS1130)
Project 1-1 (BCS1300)

4
4 
4

Period 1.2 Objects in Programming (BCS1220)
Calculus (BCS1440)
Logic (BCS1530)
Project 1-1 (BCS1300) 

4
4
4

Period 1.3 Project 1-1 (BCS1300) 6

Period 1.4 Linear Algebra (BCS1410)
Data Structures and Algorithms (BCS1420)
Object-Oriented Modelling (BCS1430)
Project 1-2 (BCS1600)

4
4
4

Period 1.5 Databases (BCS1510)
Statistics (BCS1520)
Algorithmic Design (BCS1540)
Project 1-2 (BCS1600)

4
4
4

Period 1.6 Project 1-2 (BCS1600) 6

(*) Project 1-1 will start in period 1.1 and will run until period 1.3; Project 1-2 will start in period 1.4 and will run until period 1.6. 
The credits for the projects will become available at the end of period 1.3 and period 1.6, respectively. Please see the course 
description section Project 1-1 and Project 1-2 for more details on the project curriculum. For each period, we will give a short 
explanation of the various parts. Before the start of each period, the students will receive detailed information about the 
content, the study material, the teaching form, the schedule, and the examination method.

Period 1.1 

Introduction to Computer Science (BCS1110)

Examiner: Dr. Ashish Sai & Dr. Thomas Bitterman

Desired Prior Knowledge: None

Prerequisites: None

Description: The primary goal of Introduction to Computer Science is to introduce fundamental 
concepts and foster critical skills found throughout the field of computer science. Fundamental 
concepts include algorithms, computer architecture and hardware, models of computation, 
computer networks, and operating systems. Critical skills include abstraction, decomposition, 
pattern recognition, and algorithmic thinking. All concepts and skills are introduced in a lecture 
setting and explored further in the lab through the development of a wirelessly controlled 
microcontroller device. At the end of this course, students will appreciate the depth of the field and 
be prepared for subsequent research and educational activities.

Knowledge and insight: Students will be able to explain the fundamental concepts and how they 
relate to the broader field of Computer Science. Students will demonstrate awareness of the current 
trends and developments in Computer Science.

Applying knowledge and insight: Students will analyze and decompose a given computational 
problem and identify appropriate methods and tools to design a solution. They will apply the 
fundamental concepts and critical skills to a practical problem requiring a solution that touches on 
various subfields of Computer Science.
Judgement: The students will be able to recognize and compare different approaches and 
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techniques available within computer science to solve a given problem. 

Communication: Students will communicate about different aspects of computer science using 
appropriate terminology and format such as pseudo-code and UML diagrams. They will describe 
solutions to abstract computational problems verbally and in writing. They will also be able to 
justify their design choices and document them in a traceable manner.

Learning skills: Students will work independently and collaboratively to understand and decompose 
a computing problem. They will identify and apply techniques and tools in order to solve the 
problem.

Study material: “An Invitation to Computer Science” by G. Michael Schneider, 8th Edition

Additional literature:
“Computational Thinking for the Modern Problem Solver” by David Riley, Kenny A. Hunt
“Computer Science Illuminated” by Nell B. Dale

Exam: Written exam (75%) + group project (25%)

ECTS: 4

Procedural Programming  (BCS1120)

Coordinator: Dr. Enrique Hortal

Examiners: Dr. Enrique Hortal& Charis Kouzinopoulis

Desired Prior Knowledge: None. 

Prerequisites: None. It appears as part of the pre-requisites of the second semester project in year 
1, both projects of year 2, the year 2 course Databases and the year 3 courses, Parallel Programming 
and Robotics and Embedded Systems.

Description: The course provides the basics of computer science and computer programming. 
After a short introduction to computer organization, the principles of programming are 
presented. The main topics of the course are: data types, variables, methods, parameters, decision 
structures, iteration, arrays, recursion and a branching application (related to the semester 
project). Programming skills will be acquired during practical sessions using the object-oriented 
programming language Java.

Knowledge and understanding: The course offers preliminary methodological and theoretical 
bases for studying and applying computers and computer programming on which the rest of the 
curriculum builds.

Applying knowledge and understanding: Whenever a computer system or a programming system 
has to be designed and implemented the knowledge and insights acquired during the course can be 
used and applied.

Making judgements: After successful completion of the course, students will be able to judge the 
quality and correctness of simple non-object-oriented programs.
Communication: The skills acquired during the course will enable students to communicate about 
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standard programming constructs and algorithmic basics.

Learning Skills: After successful completion of the course, students will be able to formalize, analyse 
and program solutions to simple software problems.

Study material: Lecture slides, example code and multimedia material that are made available 
before and after each lecture. 

Recommended literature: H. Schildt, Java: A Beginner’s Guide, Eighth Edition, ISBN: 1260440214, 
McGraw-Hill Education

Additional literature: C. Horstmann (2016). Java Concepts (8th Edition). John Wiley & Sons, New 
York, ISBN: 978-1-1190-5645-4 or C.Horstmann (2012). Big Java Late Objects. John Wiley & Sons, 
New York, ISBN 978-1-1180-8788-6 

Assessment: Closed-book written exam (90%) + Assignments (10%)

ECTS: 4

Discrete Mathematics (BCS1130)

Examiner: Dr. Marieke Musegaas, dr. Otti D’Huys and dr. Stefan Maubach

Desired Prior Knowledge: None.

Prerequisites: None. 

Description: In this course, we build a mathematical framework that is based on logic and reason. 
The main objective of the course is to make students familiar with the language of mathematics. 
Students will learn how to make sound arguments and to detect where and why certain arguments 
go wrong. For this purpose, we will discuss the basic principles of logic and, closely related, the basic 
types of mathematical proofs. In doing so, we will encounter numbers such as integers, natural 
numbers and real numbers and we shall examine what makes these numbers special. After that, we 
will use basic logic to discuss, among other things, the following mathematical concepts: infinity, 
sets, relations, functions, permutations and combinations. Our fundamental tool in all of this is plain 
common sense. You really do not need your toolbox of mathematical formulas learned in previous 
studies and neither do you need a calculator. Pen and paper are the basic instruments needed. 
After completing each topic, exercises will be provided to be completed in class or at home, since 
mathematics is mainly learned by practising repeatedly.

Knowledge and understanding: Students will be able to read, interpret and manipulate basic 
mathematical terminology (propositional logic, quantifiers, set theory, relations, functions, 
and combinatorics). Students will also be able to read and interpret several different types of 
mathematical proofs and identify whether a purported proof is mathematically sound.

Applying knowledge and understanding: Upon completion of the course students will know how 
to read, interpret, write and manipulate rigorous mathematical statements using propositional 
logic, quantifiers, set theory, relations, functions and combinatorics. Students will be able to select, 
from a range of mathematical tools, which is appropriate to prove or disprove a given mathematical 
statement, and apply the chosen tools, rigorously and clearly in order to achieve the desired goal.
Making judgements: Students will be able to distinguish between mathematically sound and 

72 - Student Handbook



unsound statements and defend the rigour of their own mathematical arguments.

Communication: Students will be able to write clear, rigorous and explicit mathematical arguments 
using standardized mathematical terminology and such that each step in the argument is a logical 
consequence of earlier steps.

Learning skills: By the end of the course, students will be able to autonomously and critically reflect 
upon the mathematical correctness of their own arguments.

Study material: A. Chetwynd & P. Diggle: Discrete Mathematics. Butterworth- Heinemann, Oxford, 
ISBN 9780340610473. Lecture notes will also be provided.

Recommended literature: None

Exam: Closed book written exam

ECTS: 4

Period 1.2

Objects in Programming (BCS1220) 

Coordinator: Dr. Thomas Bitterman

Examiners: Dr. Thomas Bitterman, Dr. Evgueni Smirnov

Tutors: Prianikov, Nikola; Barta, Lázár; Doss, Heinz; Bams, Guillaume; Balan, Alexandra; Goldie, 
Samuel; Buiter Sanchez, Arantxa; Gójska, Maja; Timmermans, Derrick; Straka, Filip; Goffinet, Arthur

Desired prior knowledge: Procedural Programming
 
Prerequisites: None. 

Description: This course is a follow-up to the course Introduction to Computer Science 1. It teaches 
object-oriented programming in Java. The main topics covered in the course are objects and classes, 
interfaces and polymorphism, event handling, inheritance, graphic user interfaces, exception 
handling, and streams.

Knowledge and understanding: After successful completion of the course, students will be able to 
explain the methodological and theoretical principles of object-oriented programming.

Applying knowledge and understanding: Students will be able to implement basic object-oriented 
computer programs. They will be able to design and describe simple object-oriented computer 
systems.

Making judgements: Students will be able to judge the quality and correctness of simple object-
oriented programs.

Communication: Students will be able to communicate about object-oriented programming 
constructs and algorithmic basics.
Learning skills: Students will be able to recognize their own lack of knowledge and understanding 
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and take appropriate action such as consulting additional material or other sources of help.

Study material: Course notes, slides, and other information made available.

Recommended literature: C. Horstmann (2016). Java Concepts (8th Edition). John Wiley & Sons, New 
York, ISBN: 978-1-1190-5645-4 
C.Horstmann (2012). Big Java Late Objects. John Wiley & Sons, New York, ISBN 978-1-1180-8788-6 

Assessment: Written exam (80%) + practical assignments (20%).

ECTS: 4

Calculus (BCS1440) 

Examiner: Dr. Otti D’Huys & Dr. Gijs Schoenmakers 

Prerequisites: None.

Description: The following subjects will be discussed in Calculus: limits and continuity,
differential calculus, integral calculus, sequences and series, introduction to differential equations, 
introduction tomultivariable calculus. In addition to the main facts and concepts, problem-solving
strategies will be discussed. Both the intuition behind the concepts and their rigorous
definitions will be presented along with simple examples of formal mathematical proofs.

Knowledge and understanding: Students can define, write and explain key facts and concepts 
involving limits and continuity, can interpret and solve differential calculus, integral calculus, 
sequences and series, first-order linear differential equations problems, and understand the basics 
of multivariable calculus.

Applying knowledge and understanding: Students are able to solve problems applying the concepts 
learned in the course, using standard problem-solving strategies.

Making judgements: Students are able to analyse a simple problem within the course content 
and justify the solution methodology they choose. They can summarize this methodology 
mathematically.

Communication: Students are able to explain their solution strategy in written form and defend 
their solution strategy in discussion with others

Learning Skills: After successful completion of the course the students will be able both to solve 
standard problems (constructing graphs of functions, finding extrema of functions, computing 
limits, summing infinite series etc.) and to apply their knowledge in solving and analysing more 
complex problems (e.g. in analysis of numerical algorithms).

Study material: Calculus, a complete course, any edition, by R.A. Adams, Addison Wesley Longman 
and materials provided during the lectures.

Exam: Intermediate bonus assignments and a final written exam.

ECTS: 4
Logic (BCS1530)
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Coordinators: Dr. Tjitze Rienstra & Dr. Stefan Maubach

Examiners: Dr. Tjitze Rienstra, Dr. Stefan Maubach & Dr. Nico Roos

Description: This course deals with three logical systems, namely propositional logic, first-order 
predicate logic and dynamic logic. The course covers notation systems, syntax and semantics, valid 
consequences, deduction, semantic tableaux, and proof systems.

Knowledge and understanding: Students need to get accustomed to the fundamental concepts 
of mathematical logical systems (propositional logic and predicate logic) to able to describe 
information in a logical framework and to reason and prove correctly. Students will get accustomed 
to the basic concepts of some advanced logical systems (dynamic logic and Hoare logic).

Applying knowledge and understanding: Student will apply the reasoning and proof methods 
learned to small-scale problems and some more complex situations.

Making judgements: Students will learn to judge how to reason correctly using mathematical 
proofs and how to judge which logical system is suitable to solve the problem at hand.

Communication: The chosen syntax of the logical language used must be easily understandable by 
peers and other experts the logical proofs given must be correct, concise and easily understandable.

Learning skills: Having learned basic logical concepts and reasoning techniques the students are 
able to apply them to larger-scale problems.

Study material: Johan van Benthem, Hans van Ditmarsch, Jan van Eijck, Jan Jaspars, Logic in Action. 
Edition of February 2014 or later. This is a freely available e-book. Check your Canvas for the link.

Exam: Written exam.

ECTS: 4

Project 1-1 (BCS1300)

Coordinator: Dr. Martijn Boussé

Description: Students work on a project assignment in small groups of six to seven students. The 
group composition stays the same for the whole project and is announced shortly before the 
project opening in period 1.1. The students are guided through the project by tutors (for project 
management) and mediators (for team dynamics). The project assignment is divided into three 
subtasks (one per period) and is strongly related to the course content from period 1.1 and 1.2. In 
period 1.1, after receiving the assignment for the whole project at the end of week 4, the students 
can start working on the project, and work full-time on the project in week 8 after the exams. In 
period 1.2, the students continue working on the projects in parallel to the other courses of that 
period. In period 1.3, the students work two weeks full-time on the project. The students meet 
their tutor about 3 times per period. A plenary Q&A with the examiners will be organized in period 
1.1 and 1.2. The students will engage in several feedback and graded moments with the examiners 
during the project.

75 - Student Handbook



Knowledge and understanding: Interpret constraint-satisfaction problems arising in practice and 
translate this to discrete-mathematical algorithmic models capable of solving the problem. Gain 
insight into practical use of basic software design and development principles. Recognise and relate 
user-computer interactions to concepts from graphics and user-interface frameworks. Strengthen 
knowledge of basic algorithms and methods for efficiently solving constraint-satisfaction problems 
arising in applied mathematics (especially: discrete mathematics) and artificial intelligence.

Applying knowledge and understanding: Design an answer strategy for scientific questions using 
analytical thinking and logical reasoning. Translate discrete-mathematical algorithmic models to 
software code. Implement software to efficiently solve constraint-satisfaction problems arising 
in applied mathematics (especially: discrete mathematics) and artificial intelligence by finding, 
designing and applying appropriate algorithms. Formulate computational experiments, and analyse 
and interpret the results. Apply basic design and development principles in the construction of 
software systems. Use existing software application frameworks for graphics and user interfaces. 
Use tools for software project management such as version control systems and issue trackers. 
Identify project goals, deliverables, and constraints. Plan and chair meetings. Create minutes for 
meetings. Work in a team such that the workload is balanced. Plan teamwork by setting deadlines 
and distributing tasks.

Making judgements: Evaluate different mathematical and computational models with respect to 
their suitability, efficiency and correctness for a specific task. Elicit and evaluate relevant scientific 
background information. Evaluate the group’s progress during the project.

Communication: Give a clear and well-constructed presentation, including a demonstration of the 
product, and with appropriate use of illustrations and/or videos. Offer and respond to questions on 
and constructive criticism of presentations. Write a project report according to the structure of an 
academic article. Submit arguments in exact sciences, with appropriate use of formulae and figures. 
Cite published sources in the project report according to the academic guidelines. Structurally 
inform stakeholders on project progress. Effectively communicate with project group members 
about task division, planning and project deadlines. Effectively communicate with group members 
by listening to others’ ideas; be contactable and include others in the discussion. Cooperate in a 
group to reach a consensus view. Give constructive feedback to team members. Communicate in 
the English language.

Learning skills: Reflect on one’s own academic abilities and functioning in a team.

Study material: Project manual project 1-1, Maastricht University

Assessment:
The final grade will be composed of a project grade and a skill class grade. The project grades 
consists of several components such as project management, deliverables, presentation, and peer 
feedback. The skill class grade will depend on the total number of passed skill classes. (NG for the 
project is given if a student failed more than 2 skill classes).
Students not complying with attendance and participation requirements during the project 
meetings or examination moments may not be allowed to attend examination moments or may 
receive an NG.

Skill classes:
Students will engage with a series of skill classes that prepare and support them for project work 
such as project management, (pair) programming, team dynamics, and communication.

ECTS: 6
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Period 1.4

Linear Algebra (BCS1410) 

Examiner:  Dr. Marieke Musegaas, dr. ir. Philippe Dreesen & dr. Steve Chaplick

Desired Prior Knowledge: None.  

Prerequisites: None.

Description: This course introduces the fundamental concepts of linear algebra, and examines them 
from both an algebraic and a geometric point of view. First, we address what can be recognized 
without doubt as the most frequently occurring mathematical problem in practical applications: 
how to solve a system of linear equations. Then we discuss linear functions and mappings, which 
can be studied naturally from a geometric point of view. Vectors spaces are then introduced as a 
common framework that brings all themes together. Next, we shift from the geometric point of 
view to the dynamic perspective, where the focus is on the effects of iterations (i.e., the repeated 
application of a linear mapping). This involves a basic theory of eigenvalues and eigenvectors, 
which have many applications in various branches of science as for instance in problems involving 
dynamics and stability, in control theory, and in optimization problems found in data science. Key 
concepts in the course are vectors, matrices, systems of linear equations, eigenvalues, eigenvectors, 
linear transformations, and orthogonality. The software package Matlab is introduced in the 
accompanying computer classes, where emphasis is put on the application of linear algebra to solve 
real world problems. 

Knowledge and understanding: Students are able to recognize and explain the fundamental 
concepts of Linear Algebra: systems of linear equations, vectors and vector spaces, basis and 
coordinates, matrices and matrix-vector computations, linearity and orthogonality, linear 
independence, rank, fundamental spaces (row space, column space, and null space), determinants 
and invertibility, eigenvalues and Eigen spaces, diagonalization.

Applying knowledge and understanding: Students are able to analyse a linear algebra problem from 
both an algebraic and a geometrical point of view. Students can solve systems of linear equations, 
compute determinants and rank, compute eigenvalues and Eigen spaces, make use of complex 
numbers, diagonalizable matrices, and perform change of coordinates. 

Making judgements: Students are able to look at the same problem from different angles and to 
switch their point of view (from geometric to algebraic and vice versa).

Communication: Students are able to motivate both from an algebraic and a geometric point of 
view the solution set of a system of linear equations, the linear independence and orthogonality of a 
set of vectors, the linear transformation between two coordinate systems, the fundamental spaces 
associated with a matrix, the invertibility of a matrix, and the diagonalization of a matrix in terms of 
the properties of its eigenvalues and eigenvectors.

Learning skills: Students have acquired the skills to autonomously recognize elements of practical 
problems, which can be addressed and solved with linear algebra, and use Matlab to solve larger 
scale problems.

Study material: David C. Lay, Linear algebra and its applications, 6th ed., Pearson, ISBN: 978-1-292-
35121-6.

Recommended literature: None

Exam: Closed book written exam

ECTS: 4 
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Data Structures and Algorithms (BCS1420)

Coordinator: Tom Pepels, M.Sc.

Examiners: Dr. Francesco Barile, Tom Pepels, M.Sc., & Dr. Bastian Küppers

Tutor(s): TBA

Desired prior knowledge: Programming in Java, Procedural Programming (BCS1120), Objects in 
Programming (BCS1220)

Prerequisites: None.

Description: The Data Structures and Algorithms course introduces the students to the design 
and application of data structures and algorithms. Abstract datatypes will be used as a central 
topic in this course. Together with the basic abstract data types such as trees, lists, and graphs, 
the associated algorithms and their complexity are discussed. The differences between the 
best, expected, and worst behaviour of an algorithm is explained. Supported by the concepts 
of complexity bounds and big O notation complexity is illustrated on several algorithms such 
as search, and string & graph algorithms. After completing this course, students will be able to 
determine the appropriate data structures and algorithms for simple problems.

Knowledge and understanding: Students will acquire a thorough understanding of both 
fundamental and complex data structures—ranging from arrays and linked lists to trees and 
graphs—alongside the principles of algorithm design, such as recursion, sorting, and graph 
algorithms. The curriculum emphasizes the importance of complexity analysis, teaching students 
to evaluate algorithm performance using Big O notation and other measures. Students will explore 
various algorithmic strategies, including dynamic programming and greedy algorithms, to solve 
computational problems efficiently. 

Applying knowledge and understanding: Students will directly apply theoretical concepts through 
hands-on coding tutorials, designing and implementing algorithms to address specific problems. 
The primary learning goals include mastering the selection and application of appropriate data 
structures for optimizing software performance, conducting complexity analysis to evaluate and 
improve algorithm efficiency, and developing solutions for software development challenges. 
This approach aims to enhance students’ problem-solving skills and prepare them for advanced 
computational tasks in their academic and professional futures. By the end of this course section, 
students will have gained experience in applying theoretical knowledge to practical scenarios, 
demonstrating their ability to navigate complex problems and develop efficient, effective solutions.

Making judgements: Students are tasked with developing the ability to critically assess the 
efficiency and effectiveness of different data structures and algorithms in solving computing 
problems. This involves comparing various algorithmic approaches based on their time and space 
complexities, understanding the trade-offs involved in algorithm selection, and justifying the choice 
of specific data structures for given scenarios.

Communication: Students will be able to explain how data structures and algorithms are to be 
included in program designs.

Learning skills: Students are encouraged to develop autonomous learning habits and critical 
thinking abilities. The focus is on fostering the capacity to independently acquire new 
computational techniques, adapt to evolving programming paradigms, and apply problem-solving 
strategies in unfamiliar contexts.

78 - Student Handbook



Study material: The course follows the Algorithms Fourth Edition book. Next to the book, weekly 
lecture videos and short introduction videos to key topics are provided.

Exam: ‘Closed Book’ written exam

Recommended literature: Sedgewick and Wayne (2011) Algorithms Fourth Edition. Addison Wesley. 
ISBN: 978-0321573513 

Additional literature: A Y Bhargava (2016). Grokking Algorithms: An Illustrated Guide for 
Programmers and Other Curious People. Manning. ISBN: 978-1617292231

ECTS: 4

Object-Oriented Modelling (BCS1430)

Examiner: Dr. Ashish Sai, Dr. Yuquan Wang

Desired Prior Knowledge: Procedural Programming, Objects in Programming.

Prerequisites: None.

Description: This course introduces students to the design and analysis aspects of object-oriented 
programming. Software construction for real world applications has inherent complexities both 
in terms of designing and maintaining it. In this course, the students will learn how to model 
a real-world problems in an object-oriented programming context using tools like Unified 
Modelling Language (UML). Students will also learn techniques such as structural, behavioral and 
creational design patterns, GRASP principles to create modular, flexible and reusable software. 
After completing the course, the students would have gained practical experience in problem 
formulation, decomposition (analysis) and solution building (design) using object-oriented 
modelling techniques.

Knowledge and insight: Students understand the principles and practices of object-oriented 
programming with a focus on design and analysis. Students can explain the use of tools such as 
UML for modelling software systems. Students also understand the use of design patterns and 
GRASP principles in improving software quality.

Applying knowledge and insight: After the course, students can critically analyze software models, 
designs and implementations. Students will be able to use UML diagrams to represent software 
requirements, system architecture, class structure, system behavior and interactions. Students 
will also be able to implement software solutions using appropriate design patterns and GRASP 
principles in an object-oriented language such as Java.

Making Judgements: The students can judge the suitability of different object-oriented modelling 
techniques, design patterns and GRASP principles for different software development problems. 
Students can also evaluate the trade-offs between various design alternatives in terms of 
complexity, modularity, flexibility and reusability. Students can critically assess the quality of their 
own and others’ software designs and implementations using appropriate criteria and metrics.

Communication: Through the course, students become able to communicate effectively with 
different stakeholders involved in software development using appropriate techniques. Students 
can present their software designs and implementations using UML diagrams and documentation.
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Learning skills: Students develop independent learning skills to keep up with the evolving trends in 
object-oriented design and analysis. Students also practice how to reflect on software design and 
implementation in a professional manner.

Study material: “Applying UML and Patterns” by Craig Larman 

Additional literature:
•	 “Clean Code: A Handbook of Agile Software Craftsmanship” by Robert Cecil Martin
•	 “Design Patterns: Elements of Reusable Object-Oriented Software” by Erich Gamma et al.

Exam: Written exam (70%) + practical assignments (30%)

ECTS: 4

Period 1.5

Databases (BCS1510) 

Examiner: Dr. Tony Garnock-Jones

Desired prior knowledge: Procedural Programming, Objects in Programming, Data Structures and 
Algorithms, Software Engineering.

Prerequisites: None. 

Description: This course covers the use of (relational) databases and data modelling with the goal 
of writing (distributed) data-intensive software applications. Specifically, students will learn to use 
the Structured Query Language (SQL) to manipulate data to develop data-models that are Atomic, 
Consistent, Isolated and Durable. Moreover, the course covers alternative (distributed) data-storage 
methods and object persistence techniques such as NoSQL. During the course, students will learn to 
use different database management systems and how to use them to build software.

Knowledge and understanding: Students will be able to describe the basic concepts of databases, 
explain the fundamental concepts of database management systems, query languages, data 
modelling and database programming.

Applying knowledge and understanding: Students will be able to explain the proper database 
design based on system requirements, indicate possibilities and limitations of database types. 
In addition, students will be able to combine software architectures to design and construct a 
database application.

Making judgements: Students will be able to analyze and justify a practical database problem, 
examine different approaches, and refine database models based on use cases. Moreover, they can 
make improvements to existing database designs, reflect on certain solutions of the databases 
design and implementation, and assess the correctness of the database model.

Communication: Students will be able to summarize the basic entities and relationships involved 
in persistent data, and communicate with developers, database managers and users on proper 
database design and interfacing.
Learning skills: Students will be able to identify and understand follow-up literature, beyond the 
teaching material of the course.
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Study material: Alan Beaulieu, 2020. Learning SQL, (3rd ed.). O’Reilly Media, Inc.

Recommended literature: Martin Kleppmann, 2017. Designing Data-Intensive Applications. O’Reilly 
Media, Inc.

Exam: Written exam (75%) + practical assignment (25%)

ECTS: 4

Statistics (BCS1520)

Examiner: Dr. Anirudh Wodeyar

Prior Knowledge: Calculus and Discrete Mathematics. 

Prerequisite: None. 

Description: Statistics introduces the student to the main concepts of both probability theory and 
statistics. With respect to probability theory, students learn how to make use of random variables 
to extract the probability distribution of an experiment. Additionally, topics such as expectation, 
standard deviation, and independence will be discussed. The statistics part of the course discusses 
basic statistical topics such as the central limit theorem, verification of hypotheses, and confidence 
intervals. 

After completing this course students will have obtained an overview of commonly seen probability 
distributions, as well as several statistical procedures. Additionally, the student will be able to deal 
with problems that involve probabilities and determine an outcome for such problems (e.g., the 
expected outcome).

Knowledge and understanding: Students will obtain an overview of the most relevant and 
frequently used probability distributions as well as several statistical procedures 

Applying Knowledge and understanding: Students can calculate probabilities, expectations, 
variances and related quantities in a wide variety of probabilistic experiments; estimate statistical 
quantities; perform several statistical tests to extract information.

Making judgements: Students can analyse probabilistic experiments, critically analyse statistical 
inferences and decide whether to accept or reject statistical hypotheses. Choose, motivate, and 
contrast methods for statistical analysis. 

Communication: Students can explain how to solve problems involving probabilities and/or 
statistical procedures. 

Learning Skills: Students can reflect on the use of probability theory and statistics in other domains 
in order to increase one’s knowledge.

Study material: Probability and Statistics for Engineers and Scientists (ninth edition) by Walpole, 
Myers, Myers, and Ye, ISBN 9781292161365. Additional material from lectures, tutorials and other 
resources.

Recommended literature: None

Assessment: 20% homework assignments and 80% written final exam). 

ECTS: 4
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Algorithmic Design (BCS1540)

Coordinator: Dr. Thomas Bitterman

Examiners: Dr. Thomas Bitterman & Dr. David Mestel

Tutors: Arslan, Ayse; Schmitz, Britt; Vers,ebeniuc, Dumitru; Vroom, Thomas; Spišák, Matej; 
Weindorfer, Eric; Straka, Filip; Anerdi, Giacomo

Desired prior knowledge: Data Structures and Algorithms

Prerequisites: None

Description: Algorithmic Design formalizes the main algorithmic paradigms and techniques 
including greedy and divide-and-conquer strategies, dynamic programming, multi-dimensional 
searching, computational geometry, linear programming, randomization, and approximation 
algorithms. It familiarizes students with amortization and NP-completeness. After completing the 
course, students will be expected to show good design principles and adequate skills at reasoning 
about the correctness and complexity of algorithms.

Knowledge and understanding: Students can give examples of run-time complexity classes for well-
known algorithms. Students can differentiate between different algorithm designs from examples. 
Students can describe some advanced algorithms and highlight their properties. Students know the 
complexity classes P and NP.

Applying knowledge and understanding: Students will be able to derive the run-time complexity of 
select algorithms. Amortization can be applied when deriving algorithm complexity.

Making judgements: Students will be able to judge the quality and correctness of simple object-
oriented programs.

Communication: Students will be able to communicate about object-oriented programming 
constructs and algorithmic basics.

Learning Skills: Students will be able to recognize their own lack of knowledge and understanding 
and take appropriate action such as consulting additional material or other sources of help.

Study material: Course notes, slides, and other information made available.

Assessment: Written exam (80%) + practical assignments (20%).

Recommended literature: C. Horstmann (2016). Java Concepts (8th Edition). John Wiley & Sons, New 
York, ISBN: 978-1-1190-5645-4 or C. Horstmann (2012). Big Java Late Objects. John Wiley & Sons, 
New York, ISBN 978-1-1180-8788-6

Additional literature: H. Schildt, Java: A Beginner’s Guide, Eighth Edition, ISBN: 1260440214, 
McGraw-Hill Education.

ECTS: 4
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Project 1-2 (BCS1600)

Coordinator: Dr. Otti D‘Huys

Prerequisites: In order to participate in this project the student has to have passed
two out of four courses from the set: Discrete Mathematics, Calculus, Procedural Programming and 
Objects in Programming. 

Description: Students work on a project assignment in small groups of about seven students. 
The group composition stays the same for the whole project and is announced before the project 
opening in period 1.4. The students are guided through the project by a fixed tutor. The project 
assignment is related to the content of the courses from year 1. In period 1.4, after receiving the 
assignment for the whole project at the end of week 5, the students start working on the project 
in parallel to their courses. They meet their tutor approximately once every week. In period 1.6, the 
students work three weeks full-time on the project and meet their tutor twice a week. 

At the beginning of period 1.5, the students hand in a planning, along with a short summary about 
the work completed so far, and receive feedback from the examiners. By the end of period 1.5 the 
students have a midway evaluation as formative assessment, and hand in a draft report. In period 
1.6, they submit a final report on their project and attend a final examination. 

Knowledge and understanding: Interpret the meaning of mathematical models of real-world 
processes. Gain insight into practical use of software design and development principles. Recognise 
and relate user-computer interactions to concepts from graphics and user-interface frameworks.
Strengthen knowledge of basic algorithms and methods for specific problems in computer science.

Applying knowledge and understanding: Students will be able to design an answer strategy for 
scientific questions using analytical thinking and logical reasoning and to translate mathematical 
models to software code. Furthermore, students will be able to implement software to solve 
problems in applied mathematics by applying numerical methods and artificial intelligence 
algorithms, formulate computational experiments, and analyse and interpret the results, apply 
design and development principles in the construction of software systems and use existing 
software application frameworks for graphics and user interfaces. Even more so, students will learn 
to use tools for software project management such as version control systems and issue trackers, 
identify project goals, deliverables, and constraints. Lastly they will learn how to plan and chair 
meetings, create notes for minutes,  work in a team such that the workload is balanced and plan 
teamwork by setting deadlines and distributing tasks.

Making judgements: Students will learn to evaluate different mathematical and computational 
models with respect to their suitability, efficiency and correctness for a specific task.

Communication: Students will be able to give a clear and well-constructed presentation, including a 
demonstration of the product, and with appropriate use of illustrations and/or videos, to offer and 
respond to questions on and constructive criticism of presentations. Furthermore, they will learn to 
write a project report according to the structure of an academic article, submit arguments in exact 
sciences, with appropriate use of formulae and figures. They learn to cite published sources in the 
project report according to the academic guidelines. Additionally, students will learn to structurally 
inform stakeholders on project progress and effectively communicate with project group members 
about task division, planning and project deadlines, effectively communicate with group members 
by listening to others’ ideas; be contactable include others in the discussion. It will be important to 
cooperate in a group to reach a consensus view, communicate in the English language, elicit and 
evaluate relevant scientific background information.

Learning skills: Reflect on one’s own academic abilities and functioning in a team.
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Study material: Project manual project 1-2, Maastricht University.

Assessment:
FinalGrade=0.9 • (ProjectGrade v IndividualGrade)+skillClassGrade 

The individualGrade is given due to either outstanding or not enough contribution of a student to 
the project. By passing skill classes, the students can get a reward called skillClassGrade, which is 1 
if the students passes sufficiently many components of all skill classes, 0.5 if the students passed 
most components, and 0 if the students fails for a critical amount of the skill class tasks. Failing all 
components of more than 2 skill classes will lead to an NG in the project. Missing mandatory project 
events such as project meetings and examination moments will lead to a reduction of the grade or 
even to receiving an NG for the project. 

Skill classes: There will be skill classes on the following topics (each with components spread over 
periods 1.4-1.5)

Information Research: Systematic Literature Search 

These skill classes will give the students an introduction to which databases, search strings and 
settings can be used to systematically search for literature, and are guided in drafting a search plan 
for the relevant literature in the project. 

Team Dynamics: The team dynamics workshops aim to provide the students with a deeper 
awareness, insight and practice in effective team collaboration & co-creation. In a later stage, 
students evaluate the team collaboration and communication by means of interactive exercises.

Academic Writing: In the project skills components you will explore the key structure of your report, 
as well as key points of Academic Writing at Maastricht University. Areas of focus include: structure 
of paper; linguistic aspects of writing in English, presenting information logically and citation and 
reference procedures.

ECTS: 6
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2.5 �Curriculum of the second year of the Bachelor Programme Computer Science 

Year 2 ECTS

Period 2.1 Computer Networks (BCS2110)
Introduction to Artificial Intelligence (BCS2120)
Intelligent User Interfaces (BCS2130)
Elective Module Project 2-1 (*):
•	 Either: M2-1: Intelligent Interaction (BCS2710) - Project 2-1: Human-Computer Inter-

action
•	 Or: M2-1: Artificial Intelligence and Machine Learning (BCS2720) - Project 2-1: Adap-

tive Systems

4
4
4

10

10

Period 2.2 Software Engineering and Architectures (BCS2210)
Principles of Programming Languages (BCS2220)
M2-1: Intelligent Interaction (BCS2710) (*):
•	 Image and Video Processing
•	 Elective Module Project 2-1 Human-Computer Interaction
M2-1: Artificial Intelligence and Machine Learning (BCS2720) (*):
•	 Machine Learning
•	 Elective Module Project 2-1 Adaptive Systems

4
4

Period 2.3 Elective Module Project 2-1:
•	 Project 2-1 Human-Computer Interaction (BCS2710)
•	 Project 2-1 Adaptive Systems (BCS2720)

10
10

Period 2.4 Embedded Programming (BCS2410)
Computer Security (BCS2420)
Parallel Programming (BCS2430)
Elective Module Project 2-2 (*):
•	 Either: M2-2: High Performance Computing (BCS2730)
•	 Or: M2-2: Cybersecurity & IoT – Information Security (BCS2740)
•	 Or: M2-2: Cybersecurity & IoT – Ubiquitous Computing & IoT (BCS2750)

4
4
4

10
10
10

Period 2.5 IT Management and Privacy (BCS2510)
Numerical Methods (BCS2540)
M2-2: High Performance Computing (BCS2730) (*):
•	 High Performance Computing
•	 Elective Module Project 2-2 High Performance Computing
M2-2: Cybersecurity & IoT – Information Security (BCS2740) (*):
•	 Information Security
•	 Elective Module Project 2-2 Cybersecurity & IoT 
M2-2: Cybersecurity & IoT – Ubiquitous Computing & IoT (BCS2750) (*):
•	 Ubiquitous Computing & IoT
•	 Elective Module Project 2-2 Cybersecurity & IoT 

4
4

Period 2.6 Elective Module Project 2-2:
-	 Project 2-2 High Performance Computing (BCS2730)
-	 Project 2-2 Cybersecurity & IoT – Information Security (BCS2740)
-	 Project 2-2 Cybersecurity & IoT – Ubiquitous Computing & IoT (BCS2750)

10
10
10

(*) Elective Modules: second year students choose 1 out of 2 modules each semester. Each module comprises an elective 
course, an elective project and related skill classes.
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Period 2.1

Computer Networks (BCS2110)

Coordinator: Adriana Iamnitchi

Desired prior knowledge: Students should be comfortable with basic computer science concepts 
such as algorithms, data structures, and programming in languages like C, C++ or Java. 

Prerequisites: None.

Description: This course introduces the fundamental concepts in computer networking. It covers 
the principles and structures of network architectures, protocols, and interfaces. Topics include 
the OSI and TCP/IP models, network devices, routing algorithms, wireless communication, network 
security, and emerging technologies.

Knowledge and understanding: By the end of the course, students will understand the architecture, 
protocols, and components that constitute computer networks. They will have a clear grasp of how 
these elements interact to provide reliable, secure communication across interconnected devices.

Applying knowledge and understanding: Students will apply their knowledge through hands-on 
labs and projects, configuring network setups, implementing protocols, analyzing network traffic, 
and engaging in simulation activities to understand network behaviors and troubleshooting.

Making judgements: Students will be required to critically evaluate network designs, protocol 
efficiency, and security measures. They will make informed decisions to optimize network 
performance and resolve complex networking issues.

Communication: Students will develop their communication skills through group projects and 
presentations, where they will articulate complex networking concepts and solutions.

Learning skills: Students will learn through a combination of theoretical knowledge and hands-on 
experience with packet analyzers and network simulations. 

Study material: James F. Kurose & Keith Ross, Computer Networking: A Top-Down Approach, 8th 
edition (2022). ISBN: 9781292405469. Additional material provided electronically. 

Assessment: Written exam (70%) and group projects (30%).

Recommended literature: None.

ECTS: 4

Introduction to Artificial Intelligence (BCS2120)

The course starts with an analysis of the question “Can machines think?”, and the preconceptions 
usually encountered in discussions about that idea. Next, the metaphor of an “intelligent 
agent” is introduced, that is, of an entity that pursues goals by perceiving and acting flexibly 
and autonomously in a possibly very complex environment. Several state-of-the-art concepts, 
algorithms, and methods that enable computers (i.e., software and robots) to solve problems in a 
way that deserves to be called intelligent are discussed. Besides the technical background, societal 
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and ethical issues around artificial intelligence such as the current quest for human-centered and 
explainable AI and how computational techniques might lead to biases and misconceptions through 
incautious data collection are discussed.

Intelligent User Interfaces (BCS2130)

Intelligent user interaction is a relatively new field in Computer Science, involving the areas of 
Human-Computer Interaction and Artificial Intelligence. It can often be seen as the intersection 
of computer science, behavioural sciences, and other field of study. This course will start with 
an overview of how to develop user-centric interfaces, what is the role of data analysis and 
research design methods in prototyping, and how different phases, from ideation to high fidelity 
prototyping relate to each other. Moreover, intelligent user interactions, involving technologies able 
to automatically recognize human intentions and behaviours, will be discussed. These can come, 
for example, from the fields of computer vision, speech processing, text mining. A thriving area in 
the field is that of interface personalization and affective computing, that is, computing driven by 
human emotions and behaviours.

Period 2.2

Software Engineering and Architectures (BCS2210)

In this course, the student is introduced to the software engineering process. The course addresses 
the way in which large and complex software projects are conceived and managed. Topics in 
this course include, among others, requirement analysis, design methodologies, implementation 
strategies and test and maintenance procedures. In addition, the course discusses the software 
architectural design process. Several guidelines and several popular example software architectures 
are presented, as are different software delivery platforms and the current state of the art app 
development. After completing this course, the student will be able to judge the viability of a 
selected software development methodology and architectures. 

Principles of Programming Languages (BCS2220)

Coordinator: Dr. Tony Garnock-Jones

Desired prior knowledge: Experience of writing programs (in any programming language); 
acquaintance with the idea of “dynamic dispatch” from object-oriented programming or “pattern 
matching” as seen in many functional programming languages; acquaintance with the basics 
of formal logic: propositions, connectives, judgements, inference rules. Discrete Mathematics; 
Procedural Programming; Object-Oriented Modelling

Prerequisites: None. 

Description: Programming Languages are ubiquitous. Every program with an “if” statement is, 
in an important sense, an interpreter for a programming language, however simple! This course 
will equip students with an analytical toolkit for understanding contemporary programming 
languages, relating them to a “standard model” of programming languages. The flip-side of 
analysis is construction: students will develop the basic understanding and knowledge necessary 
to begin creating programming languages of their own and writing tools which interpret, compile, 
or otherwise process other programs as their input data. On the way, students will examine the 
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algebraic, functional “heart” of many programming languages, using equational reasoning to 
investigate time, change, concurrency and communication in programs.
Knowledge and understanding: After successful completion of the course, students will be able to 
relate specific programming languages to a “standard model” of programming languages.
Applying knowledge and understanding: Students will learn to solve programming problems in 
“pure functional” style, including the use of higher-order functions, and to translate between high-
level data types and various low-level data representations as seen in real machines.

Making judgements: Students will be able to differentiate between syntactic, semantic and 
pragmatic aspects of programming and programming languages, to compare and contrast static 
types and run-time predicates over data, and to explain the benefits and limitations of “pure” or 
“effect-free” styles of programming.

Communication: Students will be able to discuss the ubiquity of interpretation in computer 
programming and to explain program execution in terms of the interaction between data and 
control.

Learning skills: Finally, after completion of the course, students will be able to identify the various 
languages they come across in day-to-day programming and to identify opportunities for applying 
linguistic techniques to programming problems.

Study material: Course notes, slides, and other information will be made available.

Assessment: [TBD]

Recommended literature: Krishnamurthi, Shriram. Programming Languages: Application and 
Interpretation. Version 3.2.2., 2023. https://www.plai.org/. 

Additional literature: 
•	 Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. How to 

Design Programs. Second edition. MIT Press, 2014. https://htdp.org/. 
•	 Fisler, Kathi, Shriram Krishnamurthi, Benjamin S. Lerner, and Joe Gibbs Politz. A Data-Centric 

Introduction to Computing. Version 2023-02-21., 2023. https://dcic-world.org/.  
•	 Van Roy, Peter, and Seif Haridi. Concepts, Techniques and Models of Computer Programming. 

Cambridge, Massachusetts: MIT Press, 2004. https://www.info.ucl.ac.be/~pvr/book.html. 
•	 Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation of 

Computer Programs. 2nd ed. Cambridge, Massachusetts: The MIT Press, 1996. https://mitpress.
mit.edu/sites/default/files/sicp/index.html. 

•	 Felleisen, Matthias, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT 
Redex. Cambridge, Massachusetts: MIT Press, 2009.

ECTS: 4

Image and Video Processing
In this course, students will have a brief introduction to basic 2D signals and systems, sampling, 
image filtering. Colour domain processing in different spaces (RGB, CiE, Lab) and its relevance to 
our visual perception system will be presented. Students learn about linear and non-linear filtering 
in the spatial domain, for segmentation, noise reduction, smoothing, among others. Frequency 
domain transforms will be presented (Fourier, DCT), along with their use in filtering for image 
enhancement, de-noising, restoration, and the understanding of standards like JPEG. Video analysis 
will be introduced, with a focus on motion estimation and its relevance to compression standards 
like MPEG. 

This course is part of M2-1 Intelligent Interaction (BCS2710)
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Machine Learning

Examiners: Dr. Evgueni Smirnov & Dr. Enrique Hortal Quesada

Desired prior knowledge: Procedural Programming, Calculus, Linear Algebra, Logic
Prerequisites: None.

Description: Machine learning is a major frontier field of artificial intelligence. It deals with 
developing computer systems that autonomously analyse data and automatically improve 
their performance with experience. This course presents basic and state-of-the-art techniques 
of machine learning. Presented techniques for automatic data classification, data clustering, 
data prediction, and learning include Decision Trees, Bayesian Learning, Linear and Logistic 
Regression, Recommender Systems, Artificial Neural Networks, Support Vector Machines, Instance-
based Learning, Rule Induction, Clustering, and Reinforcement Learning. Lectures and practical 
assignments emphasize the practical use of the presented techniques and prepare students for 
developing real-world machine-learning applications.

Knowledge and understanding: After successful completion of the course, students will be able 
to describe and explain the basic machine learning algorithms. Students will understand the 
mathematical foundation of machine learning algorithms and how mathematical methods are 
successfully combined to obtain the variety of machine learning algorithms that are currently 
available.

Applying knowledge and understanding: Students will acquire the knowledge to apply, formulate, 
and validate techniques from machine learning and to apply basic machine learning algorithms 
to real-life problems. Students will be able to implement machine-learning algorithms in software 
and apply existing machine learning software implementation to datasets. Students will have the 
necessary knowledge to design, implement, and apply data processing systems that autonomously 
extract information from data, interpret results, and make decisions. 

Making judgements: Students learn how to critically analyse real-world problems, select 
appropriate machine learning techniques according to the specific problem, and predict the 
consequences of their choices. After successful completion of the course, students gain the ability to 
judge which problems can be solved better and to which extend through the application of machine 
learning techniques. Students obtain an awareness of and responsibility for ethical and social 
consequences of developments in and application of machine learning.

Communication: The skills acquired during the course will allow students to present the results of 
different stages of the application of machine-learning techniques to specialists or non-specialists.

Learning skills: After successful completion of the course, students can analyse, adapt, design, 
implement, and critically reflect on machine-learning algorithms and tools. Students also obtain the 
critical fundamental skills and knowledge to study further advanced machine learning techniques in 
the professional literature.

Study material: Lecture material provided during the lecture.

Recommended literature: 
•	 T. Mitchell (1997). Machine Learning, McGraw-Hill, ISBN-13: 978-0071154673.
•	 H. Blockeel, Machine Learning and Inductive Inference (course text), Uitgeverij ACCO, 2012.
•	 I.H. Witten and E. Frank (2011). Data Mining: Practical Machine Learning Tools and Techniques 

(Third Edition), Morgan Kaufmann, January 2011, ISBN-13: 978-0123748560.

Exam: Written “open-book” exam at the end of the course. During the course, students receive 
several graded assignments that can earn them a maximum bonus grade of 1.0.

This course is part of M2-1 Artificial Intelligence and Machine Learning (BCS2720)
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Project 2-1 (BCS2710 & BCS2720)

Coordinator: Dr. Katharina Schneider 

Prerequisites: Students must have passed Project 1-1. Furthermore, the student has to have passed 
at least two out of the following three courses: Procedural Programming, Objects in Programming, 
and Data Structures and Algorithms. The student furthermore needs to be registered for or has 
already completed at least three courses of the programme in year 2, semester 1. This project is a 
prerequisite for Project 3-1.

Description: Students work on a project assignment in small groups. The group composition stays 
the same for the whole project and is announced at the beginning of period 2.1. Throughout the 
project, the groups are guided  by a tutor with respect to the project management. The project 
assignment is related to the content of the courses from period 2.1 and 2.2. In periods 2.1 and 2.2, 
the students work on the project, while also having to attend the courses of these periods. They 
meet their tutor approximately once every two weeks. In period 2.3, the students work three weeks 
full-time on the project and meet their tutor about once to twice a week. 
The focus of this project lays on the software implementation/design and the product functionality. 
During the project, the students have to hand in several deliverables such as a project plan after 
a few weeks from the start or the implemented code at the end of the project. Peer feedback on 
implementations will add to the quality of feedback the students receive. Presentations throughout 
the project will be used to communicate the progress to the examiners. 

Applying knowledge and understanding: Students will learn to concretize project assignment 
and construct and maintain a planning Furthermore, they will learn formulating, selecting and 
validating models for the problem chosen and collect and interpret experimental data with 
evaluation metrics. Lastly they will improve their ability to plan and chair meetings, create notes 
for minutes, work in a team such that the workload is balanced and plan teamwork by setting 
deadlines and distributing tasks.

Making judgements: After completing this project, students will be able to compare and criticize 
results, position them in terms of the literature diagnose limitations and formulate a discussion.

Communication: Students will be able to write a scientific paper that: describes the project, explains 
the methods, summarizes the outcomes, discusses them and makes the conclusions. Students will 
be able to present and defend project in English and coordinate project progress in project meetings

Learning skills: Students will be able to reflect on the progress of the project and study relevant 
literature to solve problem at hand.

Study material: Project manual project 2-1, Maastricht University.

Assessment: The assessment is composed of a grade for the following deliverables:
•	 Project plan
•	 Product 
•	 Report 

Furthermore, a grade for the project management and a peer feedback grade on the product 
functionality will be included in the final grade. 

As the focus of this project lays on the software implementation/design and product functionality, 
the grade for the product has the highest weight. 
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The examiners can deviate from the group grade if a student shows either outstanding or not 
enough contribution to the project. Missing mandatory project events such as project meetings and 
examination moments will automatically lead to a reduction of the grade or even to receiving an 
NG for the project.

By passing skill classes, the students can get a reward called skillClassGrade, which is 1 if the 
students passed all skill classes, 0.5 if the students passed all but one skill classes, and 0 if the 
students passed all but two skill classes. Failing more than two skill classes will lead to an NG in the 
project. 

Skill Classes: The project comes along with skill classes that enhance the students’ soft and hard 
skills. They are closely related to the deliverables of the project. Skill classes are mandatory to pass 
to complete the project. 

Elective Module Project 2-1 Intelligent Human-Computer Interaction (BCS2710)
During this project, students will employ advanced video processing techniques to enhance the 
standard HCI experience. To allow students to quickly move on to the exploitation of contextual 
information, they will use open-source libraries and code for body gesture tracking (e.g. 
openpose) or facial expression recognition. This will draw away the emphasis from the technical 
details regarding the underlying AI models but will teach the students how to handle software 
development when interfacing with existing code and pre-trained models. The aim will be to 
build intelligent interfaces instead of accurate AI models. Specific topics that might be interleaved 
between years include (i) gesture-driven interfaces, i.e., interfaces that can be driven by hand/finger 
gestures instead of mouse clicks or keyboard commands; (ii) analysis of user interfaces based on 
eye-gaze tracking; (iii) automatic emotion and/or personality recognition during interaction and 
personalization, in replacement of personality questionnaires. 

Elective Module Project 2-1 Adaptive Systems (BCS2720)
During this project, students will develop game-playing agents of different levels for simple video 
games. To allow students to quickly venture into the software development issues encountered 
when adding techniques from artificial intelligence or machine learning into video games, they will 
rely on existing frameworks for the core AI and ML techniques, so they do not have to know all the 
technical details that go into these advanced methods. Instead, they will focus on working within 
the computational and memory constraints as defined by the platform (e.g. Android) and the real-
time operation of video games.

M2-1 (project + course) ECTS: 10

Period 2.4

Embedded Programming (BCS2410)
This course starts by introducing the students to CPU architectures (circuits, adders, multipliers, 
floating-point units, RAM) and then introduces the hardware description language VHDL. Students 
will get to practice design, implementation and debugging while they create a circuit that, for 
example, can add two numbers. Near the end of the course, when the C programming language 
has been introduced in parallel skill classes, the step to microcontroller programming will be made, 
discussing the advantages and limitations of micro-controllers and micro-processors, and allowing 
students to get some initial experience with limited general-purpose circuits.
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Computer Security (BCS2420)
Computer security is the process of detecting and preventing unauthorized and illicit access to 
a computer. As information systems have become mandatory in the commercial world, coupled 
with the increased frequency of security incidents, organizations now recognize the need for 
a comprehensive security strategy. This course will introduce a wide range of topics in such as 
security concepts and services, physical, operational, and organizational security, the role of people 
in systems security, an introduction to cryptography and the public key infrastructure, computing 
systems hardening, secure code, and secure applications development.

Parallel Programming (BCS2430)

Coordinator & examiner: Dr. Bastian Küppers

Desired prior knowledge: Introduction to Computer Science, Prodecural Programming, Objects in 
Programming, Data Structures and Algorithms

Prerequisites: None

Description: Parallel programming is the paradigm of doing computations on a computer in parallel. 
This is possible, since nowadays almost all computer systems include so-called multi-core chips. To 
exploit the full performance of such systems, parallel programming needs to be emploed. 

This course covers shared-memory parallelization with OpenMP as well as parallelization with 
message passing on distributed-memory architectures with MPI. The course starts with a recap of 
the programming language C followed by a brief theoretical introduction to parallel computing. 
Next, the course treats theoretical aspects like MPI communication, race conditions, deadlocks, 
efficiency as well as the problem of serialization. The course is accompanied by practical labs in 
which the students have the opportunity to apply the newly acquired concepts.  

Knowledge and understanding: Students recall the basic concepts of parallel programming and 
recognize important parallelization patterns.

Applying knowledge and understanding: Students are able to write parallel programing code using 
OpenMP and MPI.

Making judgements: Students are able to understand parallel source code and can decide whether a 
taken approach is appropriate for a given problem.

Communication: Students are able to explain why a specific approach is adequate for a given 
problem. 

Learning skills: Students are able to study literature on parallel programming autonomously in 
order to comprehend important details and problems in the field.

Study material: Lecture slides, Source code examples

Exam: Written final exam 

Recommended literature: Eijkhout: The Art of HPC Vol. 1 & 2 (https://theartofhpc.com/)

Additional literature: Pacheco: An Introduction to Parallel Programming

ECTS: 4
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Period 2.5

IT Management and Privacy (BCS2510)
This course will provide the student with a general introduction to enterprise information systems 
and the functionality of specific enterprise IS types (e.g., Enterprise Resource Planning, Customer 
Relationship Management, Supply Chain Management, Executive IS, Product Lifecycle Management 
systems). The students will become familiar with System Development Life Cycle (SDLC), different 
adaptation and transition approaches, project management approaches, as well as issues related 
to post-implementation, such as maintenance. Additionally, the course will provide the student 
with an introduction to the legal and technological aspects of EU and global data protection and 
privacy issues, and a business understanding of data usage practices, including the GDPR. Students 
will learn to grasp the key actors, concepts, and obligations of the GDPR, and develop awareness 
and understanding of the legal requirements they will encounter in their professional careers. 
The general introduction of the aspects of the GDPR is concretized by several examples. Students 
will learn how to become ambassadors for a global digital economy and society by learning to 
approach the processing of personal data competently and ethically. The concepts of digital ethics 
and accountability along with their limitations are illustrated through different real-life cases and 
scenarios.

Numerical Methods (BCS2540)

Coordinator: Dr. Pieter Collins

Examiners: Dr. Pieter Collins & Dr. Ir. Martijn Boussé 

Desired prior knowledge: Calculus, Linear Algebra

Prerequisites: None.

Description: Numerical methods are techniques for solving problems from continuous mathematics 
(calculus and linear algebra) with the aid of a digital computer. In this course, we will cover the 
fundamental concepts of numerical mathematics, including the floating-point representation of 
real numbers, truncation and round-off errors, iterative methods and convergence. We will study 
the simplest and most important methods for core problems of continuous mathematics, namely 
the solution of algebraic equations and differential equations, interpolating data by polynomials, 
numerically estimating derivatives and integrals, approximating functions by polynomials and 
trigonometric series, solving systems of linear algebraic equations and computing eigenvalues. 
There will be a strong practical component, with students being expected to write their own 
numerical code and test the performance and suitability of different methods on various problems. 

Knowledge and understanding: By the end of this course, students will have knowledge of the 
fundamental problems of numerical mathematics and basic methods for their solution. Students 
will understand issues of efficiency and numerical accuracy, will be able to analyse which numerical 
methods are likely to perform best on different types of problem, and evaluate whether the results 
of a given computation are trustworthy. Students will be able to write their own code (in MATLAB) 
implementing basic numerical algorithms. Advanced students will have the skills necessary to adapt 
existing numerical algorithms and develop new algorithms.

Applying knowledge and understanding: Students will be expected to implement the methods 
covered in the lectures themselves, apply them to practical problems, and explain the performance 
of different algorithms in terms of theoretical analyses.

93 - Student Handbook



Making judgements: Students will learn how to analyse which numerical methods are likely 
to perform best on different types of problem, and to evaluate whether the results of a given 
computation are trustworthy.

Communication: Students will learn the terminology required to discuss numerical algorithms and 
the results of numerical computations with mathematicians, (social) scientists and engineers.

Learning skills: Students will learn to design, analyse, implement and apply numerical methods.

Study material: Slides, pre-recorded lectures, exercise sheets.

Assessment: Written examination with formula sheet (100%). 

Recommended literature: J.D. Faires & R. Burden, “Numerical Methods”, International 4th Edition, 
Cengage, 2012; ISBN: 978-0-495-38569-1.

Additional literature: C.F. Gerald & P.O. Wheatley, “Applied Numerical Analysis”, Seventh Edition, 
Pearson, 2003; ISBN: 0-321-13304-8. T. Siauw & A.M. Bayen, “An Introduction to Matlab Programming 
and Numerical Methods for Engineers”, Academic Press, 2015; ISBN 978-0-12-520228-3.

ECTS: 4

High Performance Computing (BCS2530)
This course focuses on exploring different parallelism models and methods to obtain high 
performance in applications. Using the C++ language as a driving language, aspects of parallelism, 
GPU operations and memory performance are discussed. Programming for heterogeneous 
architectures programming will be introduced with the CUDA language. Performance modelling, 
guided performance tuning and the roofline model are also explored. After the course, students will 
be able to write efficient parallel implementations of various problems and will become familiarized 
with some performance tuning techniques.

This course is part of M2-2: High Performance Computing

Information Security (BCS2540)

Coordinator & examiner: Dr. Bastian Küppers

Desired prior knowledge: Procedural Programming, Objects in Programming, Data Structures and 
Algorithms

Prerequisites: None.

Description: Information security is a subfield of Computer security dealing with protecting 
information, which means to ensure confidentiality, integrity, and availability of information. Topics 
such as Cryptography, Access Control, Identification and Authentication play a key role in this field 
to ensure the technical foundation for information security. However, nowadays, where information 
is in constant flow across the globe, network security and (global) privacy laws are topics that also 
need to be considered when ensuring information security. 

Knowledge and understanding: Students will gain an in-depth understanding of information 
security fundamentals and their applications in real-world scenarios. In detail, they will understand 
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the basic principles of confidentiality, integrity, and availability and their importance for 
information security. Furthermore, the students will understand the technologies available for 
securing information and their proper application. 

Applying knowledge and understanding: After completing the course, the students will be able to 
develop computer systems that are in-line with the state-of-the-art of information security.

Making judgements: By understanding the fundamentals of information security, the students 
will be able to understand and spot mistakes in the proper application of technologies for ensuring 
information security. 

Communication: Students will be able to explain the principles of information security to specialists 
and non-specialists. They will be able to explain if the design of a computer system is appropriately 
taking into account the principles of information security or not and how the system could be 
improved.

Learning skills: Students will be able to read and understand literature on information security 
autonomously. The will be able to design and implement computer systems that obey the basic 
principles of information security.

Study material: Lecture slides, Source code examples

Assessment: Group project (20%)

Exam: Written final exam (80%)

Recommended literature: 
•	 Buchmann: Introduction to Cryptography
•	 Pfleeger & Pfleeger: Security in Computing

Additional literature:
•	 Goodrich & Tamassia: Introduction to Computer Security
•	 Tanenbaum & Bos: Modern Operating Systems

This course is part of M2-2: Cybersecurity & IoT – Information Security

Ubiquitous Computing & Internet of Things (BCS2750)
This course will look at the technical specifics of dealing with low power devices, the architecture 
description language and their network communication protocols including Zigbee, WLAN and 
Bluetooth and the information flow this can entail. Besides the technical challenges of low power 
devices, the course will also look at the business implications of ubiquitous computing and provide 
some answers to the question of why to introduce smart sensors and place them with customers. 
By considering models such as outcome economy, students will learn how the Internet of Things 
approach can be integrated into a business plan and generate business value.

This course is part of M2-2: Cybersecurity & IoT – Ubiquitous Computing & IoT
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Project 2-2 (BCS2730, BCS2740 & BCS2750)

Coordinator: Dr. Katharina Schneider

Prerequisites: Students must have passed Project 1-2. Furthermore, the student has to have passed 
at least two out of the following three courses: Procedural Programming, Objects in Programming, 
and Data Structures and Algorithms. The student furthermore needs to be registered for or has 
already completed at least three courses of the programme in year 2, semester 2. This project is not 
a prerequisite for another project / course.

Description: Students work on a project assignment in small groups of about six students. The 
concrete assignment is defined by the students given some umbrella topics that match the courses 
in the curriculum. Students indicate their umbrella topic preference at the beginning of period 2.4. 
The group composition stays the same for the whole project and is based on the topic preferences 
of the students. A least regret algorithm is used to ensure that the overall regret is minimized. 
Throughout the project, the groups are guided  by a tutor with respect to the project management. 
In periods 2.4 and 2.5, the students work on the project, while also having to attend the courses of 
these periods. They meet their tutor approximately biweekly. In period 2.6, the students work three 
weeks full-time on the project and meet their tutor about twice a week. 

The focus of this project lays on the project planning and communication of progress and results. 
During the project, the students have to hand in several deliverables such as a project plan after a 
few weeks from the start or the implemented code at the end of the project. Formative feedback 
sessions with the examiners on intermediate project plans will add to the quality of feedback the 
students receive. Presentations throughout the project will be used to communicate the progress to 
the examiners. 

Applying knowledge and understanding: Students will learn to set up a project assignment and 
construct and maintain a planning. Additionally, they will learn formulating, selecting and validating 
models for a concrete problem at hand and to collect and interpret data with evaluation metrics. 
Lastly they will improve their ability to plan and chair meetings, create notes for minutes,  work in a 
team such that the workload is balanced and plan teamwork by setting deadlines and distributing 
tasks.

Making judgement: After completing this course successfully, students will be able to compare 
and criticize results, position them in terms of the literature; diagnose limitations and formulate a 
discussion

Communication: Students will be able to write a scientific paper that: describes the project, explains 
the methods, summarizes the outcomes, discusses them and makes the conclusions. Furthermore, 
student will be able to present and defend project in English. Coordinate project progress in project 
meetings

Learning skills: Students will learn to reflect on the progress of the project and study relevant 
literature to solve problem at hand

Study material: Project Opening slides, Maastricht University

Assessment: The assessment is composed of a grade for the following deliverables:
•	 Project plan
•	 Poster 
•	 Report
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Furthermore, a grade for the project management, the groups’ performance during the poster 
session and during a defense at the end of the project, and a peer feedback grade on the poster 
presentation will be included in the final grade. 

As the focus of this project lays on the planning and the communication of progress and results, 
the grades for the project plan, the poster presentation and the defense together have the highest 
weight. 

The examiners can deviate from the group grade if a student shows either outstanding or not 
enough contribution to the project. Missing mandatory project events such as project meetings and 
examination moments will automatically lead to a reduction of the grade or even to receiving an 
NG for the project.

By passing skill classes, the students can get a reward called skillClassGrade, which is 1 if the 
students passed all skill classes, 0.5 if the students passed all but one skill classes, and 0 if the 
students passed all but two skill classes. Failing more than two skill classes will lead to an NG in the 
project. 

Skill classes: The project comes along with skill classes that enhance the students’ soft and hard 
skills. They are closely related to the deliverables of the project. Skill classes are mandatory to pass 
to complete the project. 

Elective Module Project 2-2 High Performance Computing (BCS2730)
In this project, students will tackle the particle physics problem of particle track reconstruction, in 
which they will attempt to reconstruct the trajectories (tracks) of particles as they leave energy 
deposits in a Large Hadron Collider detector. They will develop a pattern recognition model and 
minimize the error on found tracks by applying filtering techniques. To efficiently solve track 
reconstruction, they will design and implement data reductions and a data-parallel approach 
to tracking on GPU architectures. Students will learn a systematic approach to performance 
engineering by iteratively designing, developing, and testing a high throughput solution to tracking.

Elective Module Project 2-2 Cybersecurity & IoT (BCS2740 & BCS2750)
During this project, students will build a demonstrator of a secure distributed computational 
process using limited power hardware devices and low power data collection. They will develop 
a distributed approach to analytics by avoiding the need to centralize data, but instead working 
around the size, heterogeneity, and ownership of data by dynamically deploying micro-services in a 
federated learning setup from the service repository to the IoT edge on low power computational 
models. Attention will be paid to data security and privacy.

M2-2 (project + course) ECTS: 10 gr
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3	 Master

3.1 Master Artificial Intelligence 

The Master in Artificial Intelligence (AI) is a two-year advanced programme organized by the 
Department of Advanced Computing Sciences. The focus of this programme is on the understanding, 
design and creation of intelligent systems, such as those used in robotic systems, games or digital 
personal assistants. Artificial Intelligence has become a very active domain in both academia and 
industry. It has given rise to computer programmes and robots that learn from experience, recognize 
and adapt to patterns in their environment, and reason strategically in complex decision-making 
situations.

The impact of the field of Artificial Intelligence is pertinent due to the key role it plays in 
technological applications that have become indispensable in society, such as simple personal 
assistants that adapt the settings of your smart phone to automatically recognised activities (e.g. 
driving or attending a meeting, automated trading software used in real markets to respond to rapid 
price changes, interactive computer games that include human like opponents, robotic assistance 
in the exploration of dangerous environments, etc.). In this Master’s programme, you are trained to 
become an expert and capable of dealing with todays and future challenges in the field of Artificial 
Intelligence and its applications.

The master’s programme Artificial Intelligence covers a range of subjects emphasizing the following 
research topics as its core:
1.	 Intelligent techniques for playing and solving (board) games and controlling virtual characters in 

video games;
2.	 Situated agents to study the control and coordination of embodied agents, i.e. robots (e.g. 

autonomous flying robot swarms);
3.	 Multi-agent systems of collaborating or competing autonomous intelligent systems;
4.	 Machine learning to extract useful patterns and knowledge from experience and make 

predictions about the future;

The members of the teaching staff are actively involved in one or more of these research topics. As a 
result, the educational contents of the courses relate directly to the research performed.. 
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3.2 Curriculum of the first year of the Master Programme Artificial Intelligence 

Year 1 ECTS

Period 1 
(*)

Intelligent Search & Games (KEN4123)	
 
1 elective of the following courses: 

Data Mining (KEN4113)
Stochastic Decision-Making (KEN4221)
Signal and Image Processing (KEN4222)

Research Project 1 (**)	  

6

6
6
6

Period 2 
(*)

Advanced Concepts in Machine Learning (KEN4154)
 
1 elective course from the following courses:

Deep Learning for Image and Video Processing (KEN4244)
Advanced Natural Language Processing (KEN4259) 

 
Research Project 1 (**)  

6

6
6

Period 3 Research Project 1-1 (KEN4130) 6

Period 4 
(*)

Agents and Multi-Agent Systems (KEN4111) 
 
1 elective course from the following courses:

Explainable AI (***) (KEN4246)
Dynamic Game Theory (KEN4251)
Planning and Scheduling (KEN4253)
Building and Mining Knowledge Graphs (KEN4256)

Research Project 2 (**)

6

6
6
6
6
6

Period 5 
(*)

Autonomous Robotic Systems (KEN4114) 

1 elective course from the following courses:
Information Retrieval and Text Mining (KEN4153)
Introduction to Quantum Computing for AI and DS (KEN4155) (****)
Reinforcement Learning (KEN4157)
Computer Vision (KEN4255)

				                 
Research Project 2 (**)

6

6
6
6
6

Period 6 Research Project 2 (KEN4131)		   6

(*) 	� ECTS credits obtained in year 1 of the programme cannot be used for exemptions in year 2 of the programme. 
90 unique ECTS (course) credits (+ 30 ECTS for the Master’s thesis) need to be obtained throughout the Master’s 
programme.

(**) 	� The Research Project 1 will start in period 1.1 and 1.2 with weekly meetings. The credits for the project will become 
available at the end of period 1.3. The Research Project 2 will start in period 1.4 and 1.5 with weekly meetings. The 
credits for the project will become available at the end of period 1.6.

(***) 	� The course has a capacity of 60 students.

(****) 	� This course is a prerequisite for the elective courses Quantum Algorithms, Quantum AI, and Quantum Information 
and Security. These four courses, together with a dedicated research project on quantum computing, forms the 
specialization in Quantum Computing for AI and Data Science.
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3.3 Curriculum of the second year of the Master Programme Artificial Intelligence

Period 1, 2 and 3 of year two of the master’s program consist of electives to be chosen by the 
student. This optional program can be assembled at your own choice from the options provided, 
but within academic significance, level and relevance to your master’s track. The choice of electives 
is subject to approval by the Board of Examiners. The electives consist of the following options to 
choose from: master courses to be followed at the Department of Advanced Computing Sciences, 
at other UM master programmes, at another research university, a research project, an internship, 
a semester abroad at a foreign university. Note that you must have obtained at least 40 ECTS of 
course year 1 in order to enter the second year of the programme. 

Electives at Maastricht University outside the Department of Advanced Computing Sciences
It is possible to take electives at other relevant master’s programmes at Maastricht University 
for at most 13 ECTS in the second year of the programme. The following courses below will be 
automatically approved by the Board of Examiners of the master’s programmes AI and DSDM. You 
should apply through the Special Course Approval procedure via the My UM Portal. Note that they 
may have limited capacity. 

School of Business and Economics ECTS

Collective Decision Making (EBC4005) 6.5

Supply Chain Operations Management (EBC4016) 6.5

Negotiation & Allocation (EBC4193) 6.5

Ethics, Privacy and Security in a Digital Society  (EBC4026) 6.5

Big Data Econometrics (EBC4218 6.5

Digital Business and Economics (EBC4083) 6.5

Faculty of Psychology and Neuroscience
Besides complying that you have passed 40 ECTS, for taking these electives at FPN you should have 
passed “Advanced Concepts in Machine Learning” and “Autonomous Robotic Systems” at the Master 
AI or Master Data Science for Decision Making. 

Faculty of Psychology and Neuroscience ECTS

Auditory and Higher Order Language Processing (PSY4051) 4

Perception and Attention (PSY4052) 4

Sensorimotor Processing (PSY4054) 4

Exam: Depends on content of the elective program.

ECTS: 30

Internships: 
Another option for the elective semester in the Master Programme is to conduct a business or 
research internship. The students can choose the company or research organisation themselves. 
Together with a supervisor from the Department of Advanced Computing Sciences and a 
representative of the host organisation, the student fills out an internship proposal (which can 
be found on Canvas) and this requires approval of the Board of Examiners prior to its start. For 
this reason, it is important to start this process early. The university uses a standard internship 
agreement that students must use.
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Year 2 ECTS

Semester 1 * •	 Internship (research or business)
•	 Study abroad
•	 Elective courses at other UM Master’s programmes (at most 13 ECTS)

 
 

30

AND/OR:

Fall: At most 2 electives from the following courses:

Period 1 Data Mining (KEN4113)
Mathematical Optimization (KEN4211)
Stochastic Decision-Making (KEN4221)
Signal and Image Processing (KEN4222)
Quantum Algorithms (KEN4235)

6
6
6
6
6

Period 2 At most 2 electives from the following courses:

Quantum AI (KEN4236)
Quantum Information and Security (KEN4237)
Model Identification and Data Fitting (KEN4242)
Advanced Natural Language Processing (KEN4259)
Network Science (KEN4275)

6
6
6
6
6

Period 1-3 Research Project 2-1 6

Spring:

Period 4 At most 2 electives from the following courses:

Data Fusion (KEN4223)
Explainable AI (**) (KEN4246)
Dynamic Game Theory (KEN4251)
Planning and Scheduling (KEN4253)
Building and Mining Knowledge Graphs (KEN4256)
Computational Statistics (KEN4258)

6
6
6
6
6
6

Period 5 At most 2 electives from the following courses:

Information Retrieval and Text Mining (KEN4153)
Introduction to Quantum Computing for AI and Data Science (***) (KEN4155)
Reinforcement Learning (KEN4157)
Symbolic Computation and Control (KEN4252)
Algorithms for Big Data (KEN4254)
Computer Vision (KEN4255)

6
6
6
6
6
6

Period 4-6 Research Project 2-2 6

Semester 2 Master’s thesis AI (KEN4160) 30

(*) Note: �during the elective semester (first semester of year 2) of the master’s programme it is possible to take electives 
from our other master’s programme or relevant master’s programmes at Maastricht University (maximum of 13 
ECTS outside the Department of Advanced Computing Sciences) or to participate in a research project, a business 
internship or a study abroad semester at one of our partner universities. Please contact exchange officer and/or the 
Student Counsellor for more information. 

(**) 	 The course has a capacity of 60 students

(***) 	� This course is a prerequisite for the elective courses Quantum Algorithms, Quantum AI and Quantum Information 
and Security. These four courses, together with a dedicated research project on quantum computing, form the 
specialization in Quantum Computing for AI and Data Sciences.
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3.4 Core courses Master Programme Artificial Intelligence 
 
Period 1.1

Intelligent Search and Games (KEN4123)

Examiners:  Prof. dr. Mark Winands & dr. Dennis Soemers

Desired prior knowledge: Data Structures & Algorithms

Course description: In this course, the students learn how to apply advanced techniques in the 
framework of game-playing programs. The following subjects will be discussed:
1.	 Basic search techniques. Alpha-beta; A*.
2.	 Advanced search techniques. IDA*; B*, transposition tables; retrograde analysis and endgame 

databases; proof-number search and variants; multi-player search methods; Expectimax 
and *-minimax variants.

3.	 Heuristics. killer moves; history heuristic, PVS; windowing techniques; null-moves; forward-
pruning techniques; selective search.

4.	 Monte Carlo methods. Monte Carlo Tree Search (MCTS) techniques, enhancements, and 
applications; AlphaGo and AlphaZero approaches.

5.	 Video game AI techniques: World representations, GOAP, hierarchical task networks, behaviour 
trees.

Knowledge and understanding: The student can explain basic and advanced search techniques and 
can identify which of them to use either in a game context, or in problems with a similar structure.

Applying knowledge and understanding: Students have obtained the knowledge to develop, 
program, analyse, and apply advanced techniques autonomously to a wide variety of problems. 
They will also learn that adapting known techniques to fit a given problem can achieve a better 
performance.

Making judgements: Students will be able to judge the quality of approaches (systems or scientific 
publications) based on the techniques taught.

Communication: Students will be able to present the results of their game programs and search 
algorithms to specialists or non-specialists.

Learning skills: Students will be able to familiarize themselves with Game AI techniques beyond the 
scope of the course in order to solve a problem.

Study material: Course notes and other information made available.

Recommended Literature:
•	 Millington, I. (2019). Artificial Intelligence for Games, 3rd Edition, CRC Press, ISBN: 978-

1138483972
•	 Russell, S.J. and Norvig, P. (2020). Artificial Intelligence: A Modern Approach, 4th edition. Pearson. 

ISBN 0-13-461099-7.
•	 Yannakakis, G.N. and Togelius, J. (2018) Artificial Intelligence and Games, Springer, Berlin. ISBN 

978-3-319-63519-4 (eBook) 978-3-319-63518-7 (hardcover)

Assessment: Written exam (50%) + a large practical task (50%).

ECTS: 6
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Period 1.2

Advanced Concepts in Machine Learning (KEN4154)

Coordinator & examiner: Dr. Enrique Hortal

Desired prior knowledge: Machine Learning

Prerequisites: None.

Description: This course will introduce a number of advanced concepts in the field of machine 
learning such as Support Vector Machines, Gaussian Processes, Deep Neural Networks, 
Neuromorphic Learning, etc. All of these are approached from the view that the right data 
representation is imperative for machine learning solutions. Additionally, different knowledge 
representation formats used in machine learning are introduced. This course counts on the fact 
that the basics of machine learning were introduced in other courses so that it can focus on more 
recent developments and state-of-the-art machine learning research. Labs and assignments will 
give the students the opportunity to implement or work with some of these techniques and will 
require them to read and understand published scientific papers from recent Machine Learning 
conferences.

Knowledge and understanding: Students can explain, construct and adapt powerful machine 
learning techniques, most with a statistical background. Students recognise the need for non-
standard techniques and representations that can be used for complex/structured data. They can 
explain the strengths and weaknesses of different machine learning approaches.

Applying knowledge and understanding: Students will be able to select, adapt and apply a number 
of advanced machine learning approaches. They will be able to select the correct representation 
for a machine learning problem and translate a machine learning problem into a suited 
representational format.

Making judgements: Students will be able to judge which machine learning approach and data 
representation is best suited. They will also be able to comprehend and judge machine learning 
research.

Communication: Students will be able to relate different machine learning techniques to each other 
and explain their working, benefits, and disadvantages to non-experts. They will also be able to 
discuss the need and use of structured representation with both experts and non-experts.

Learning skills: Students will be able to relate information from different sources, and read, process 
and evaluate recent research developments in the field of machine learning.

Study material: Slides that support the lectures and collected notes and chapters from freely 
available books and course notes.

Assessment: Closed-book written exam (80%) + Assignments (20%)

Recommended literature: 
•	 Pattern Recognition and Machine Learning - C.M. Bishop
•	 Bayesian Reasoning and Machine Learning - D. Barber
•	 Gaussian Processes for Machine Learning - C.E. Rasmussen & C. Williams
•	 The Elements of Statistical Learning - T. Hastie et al.

ECTS: 6
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Project 1-1 (KEN4130)

Coordinator: Dr. Linda Rieswijk

Examiner(s): To be announced

Tutors: Dr. Gijs Schoenmakers, Dr. Menica Dibenedetto & Dr. Linda Rieswijk

Desired prior knowledge: None.

Prerequisites: None.

Description: The research project takes place during the three periods of the semester. Project 
topics are presented at the start of the semester and assigned to students based on their 
preferences and availability. The emphasis in the first phase is on initial study of the context set 
out for the project and the development of a project plan. In the second period, the goal is to start 
modelling, prototyping and developing. In period 3, the implementation, model and/or experiments 
set out in the project plan has to be finished and reported on. The project results in a project 
presentation, a project report and possibly a public website and/or product.

Knowledge and understanding: Students get to know and possibly contribute to state of the art 
methods within the fields of Artificial Intelligence and/or Data Science for Decision Making to 
answer an open question.

Applying knowledge and understanding: Student write their own research plan in coordination 
with a staff member (plus possibly outsiders) who act as clients with an open question. Students 
with different backgrounds and from both masters work together in teams to build and evaluate 
an answer to an open question. Students find, judge the suitability, apply, and evaluate state of the 
art techniques to answer questions and construct applications in the field of Artificial Intelligence 
and Data Science. Students apply the accumulated knowledge from other educational activities in 
application specific areas

Making judgements: Students judge feasibility of tasks, attainability of goals, and the amount of 
work involved. Students think about the possible consequences of their work. Students evaluate 
state of the art and the applicability and scope of research results.

Communication: Students will learn to:
1.	 orally communicate and cooperate with peers 
2.	 orally report on progress and intermediate results to superiors 
3.	 orally negotiate and communicate with clients 
4.	 communicate their ideas in written form, both for an academic and a general audience
5.	 give effective presentations

Learning skills: Students increase their own level of knowledge in a specialized sub-discipline of the 
field of Artificial Intelligence and/or Data Science. Students perform research into recent state of the 
art techniques. Students learn that the field of Artificial Intelligence and Data Science are constantly 
evolving beyond what is taught in class

Study material: Slides provided at the end of joint information sessions.  Literature provided by the 
project supervisors.

Assessment: Phase 1: project plan (15%); Phase 2: social media post+ presentation (15%); Phase 3: 
Project report + presentation (70%) 

Skill classes: A number of skill classes will be offered

ECTS: 6
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Period 1.4

Agents and Multi-Agent Systems (KEN4111)

Coordinator & examiner: Prof. dr. Gerhard Weiss

Desired prior knowledge: Basic knowledge and skills in programming.

Description: The notion of an (intelligent) agent is fundamental to the field of artificial intelligence. 
Thereby an agent is viewed as a computational entity such as a software program or a robot 
that is situated in some environment and that to some extent is able to act autonomously 
in order to achieve its design objectives. The course covers important conceptual, theoretical 
and practical foundations of single-agent systems (where the focus is on agent-environment 
interaction) and multi-agent systems (where the focus is on agent-agent interaction). Both types 
of agent-based systems have found their way to real-world applications in a variety of domains 
such as e-commerce, logistics, supply chain management, telecommunication, health care, and 
manufacturing. Examples of topics treated in the course are agent architectures, computational 
autonomy, game-theoretic principles of agent-based systems, coordination mechanisms (including 
auctions and voting), and automated negotiation and argumentation. Other topics such as ethical 
or legal aspects raised by computational agency may also be covered. In the exercises and in the 
practical part of the course students have the opportunity to apply the covered concepts and 
methods.

Formal models that will be investigated: Coordination and interaction models from game theory 
and social choice theory.

Knowledge and understanding: The student is able to describe and explain single- and multi-agent 
concepts and methods, and to analyse their strengths and shortcomings.

Applying knowledge and understanding: The student is be able to apply the gained knowledge in 
concrete application scenarios and practical applications.

Making judgements: The student is be able to judge for a given problem whether and in how far it is 
beneficial to use an agent-based approach for its solution.

Communication: The student is able to motivate and explain benefits and shortcomings of their 
usage in a given application, and thereby showing sufficient understanding of single- and multi-
agent concepts.

Learning skills: The student is able to study independently and critically literature on single- and 
multi-agent technology, including, in particular, literature describing new developments in the 
methods and techniques covered in this course.

Study material: Course slides; supplementary material to be announced.

Assessment: Practical assignments (30%) and written exam (70%)

Recommended literature: 
•	 Stuart Russell and Peter Norvig (2010). Artificial Intelligence. A Modern Approach. 3rd edition. 

Prentice Hall. 
•	 Gerhard Weiss (Ed.) (2013, 2nd edition): Multi-agent Systems. MIT Press.
•	 Mike Wooldridge (2009, 2nd edition): An Introduction to Multi Agent Systems, John Wiley & Sons 

Ltd.
•	 Yoav Shoham and Kevin Leyton-Brown (2009): Multi-agent Systems. Algorithmic, Game-

Theoretic, and Logical Foundations, Cambridge University Press.

ECTS: 6
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Period 1.5

Autonomous Robotics Systems (KEN4114)

Examiner: Dr. Rico Möckel

Desired prior knowledge: Discrete Mathematics, Linear Algebra, Probabilities and Statistics, Data 
Structures and Algorithms, Machine Learning, Search Techniques.

Prerequisites: None.

Description: Operating autonomously in unknown and dynamically changing environments is a 
core challenge that all robotic systems must solve to work successfully in industrial, public and 
private areas. Currently popular robotic systems that must demonstrate such capabilities include 
self-driving cars, autonomously operating drones, and personal robotic assistants. In this course, 
students obtain deep knowledge in creating autonomous robotic systems that can operate in 
unknown and dynamically changing environments by autonomously modelling and navigating 
in such environments. Students learn to approach these challenging tasks through three main 
techniques: swarm intelligence, model-based probabilistic frameworks, and (mostly) model-free 
techniques from artificial evolution and machine learning.

Knowledge and understanding: Students gain a deep understanding of the challenges in 
autonomous robotic systems and how these challenges are addressed in state-of-the-art systems. 
Students learn about and practice techniques for autonomous mapping, localization, navigation, 
sensing, modelling robot motion, planning, and decision-making. Through the course, students 
obtain in-depth knowledge and hands-on experience in a variety of algorithms and techniques 
including Bayesian filters (like Kalman Filters, Extended Kalman Filters, Histogram Filters, and 
Particle Filters), artificial neural networks, evolutionary algorithms, and swarm intelligence.

Applying knowledge and understanding: After successful completion of the course, students 
will have obtained in-depth knowledge to understand, adapt, apply, and autonomous robotics 
systems. Students obtain the ability to select from a variety of available tools feasible solutions 
for the complex and rather ill defined problem domains of autonomous robotic systems and to 
predict the resulting consequences of their choices. Furthermore, students learn how to choose, 
apply, formulate, and validate models of autonomous robotic systems and of appropriate control 
techniques from artificial intelligence for these systems.

Making judgements: Students will be able to comprehend and to critically judge scientific 
publications on autonomous systems, artificial evolution, and swarm intelligence. From this 
literature, students are able to search for and to critically process information to solve given 
ill-defined but in practice highly relevant problems in autonomous systems. Students are able 
to critically discuss social, economic, and ethical consequences of artificial intelligence and 
autonomous decision-making.

Communication: Students learn to critically discuss challenges and professional solutions in 
autonomous robotic applications with both experts and non-experts.

Learning skills: The course prepares students to work on robotic applications in professional 
research and business environments. Students will be able to autonomously acquire new skills 
and knowledge to develop, program, analyse and apply advanced techniques to a wide variety of 
problems.
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Study material: Thrun et al. (2005), Probabilistic Robotics, The MIT press, ISBN-13: 978-0262201629. 
Lecture material and publications provided during the lecture.

Assessment: The final course grade is 80% of the final written “closed-book” exam grade plus 20% 
of the practical group assignments grades.

Recommended literature: Floreano and Nolfi (2000), Evolutionary Robotics, The MIT press. ISBN-13: 
978-0262640565. 
Dario Floreano und Claudio Mattiussi (2008), Bio-Inspired Artificial Intelligence: Theories, Methods, 
and Technologies, ISBN-13: 978-0262062718

ECTS: 6

Project 1-2 (KEN4131)

Coordinator: Dr. Linda Rieswijk

Examiner(s): T.B.A.

Tutors: Dr. Gijs Schoenmakers, Dr. Menica Dibenedetto & Dr. Linda Rieswijk

Desired prior knowledge: None.

Prerequisites: None.

Description: The research project takes place during the three periods of the semester. Project 
topics are presented at the start of the semester and assigned to students based on their 
preferences and availability. The emphasis in the first phase is on initial study of the context set 
out for the project and the development of a project plan. In the second period, the goal is to start 
modelling, prototyping and developing. In period 3, the implementation, model and/or experiments 
set out in the project plan has to be finished and reported on. The project results in a project 
presentation, a project report and possibly a public website and/or product.

Knowledge and understanding: Students get to know and possibly contribute to state of the art 
methods within the fields of Artificial Intelligence and/or Data Science for Decision Making to 
answer an open question.

Applying knowledge and understanding: Student write their own research plan in coordination 
with a staff member (plus possibly outsiders) who act as clients with an open question. Students 
with different backgrounds and from both masters work together in teams to build and evaluate 
an answer to an open question. Students find, judge the suitability, apply, and evaluate state of the 
art techniques to answer questions and construct applications in the field of Artificial Intelligence 
and Data Science. Students apply the accumulated knowledge from other educational activities in 
application specific areas

Making judgements: Students judge feasibility of tasks, attainability of goals, and the amount of 
work involved. Students think about the possible consequences of their work. Students evaluate 
state of the art and the applicability and scope of research results.

Communication: Students will learn to:
1.	 orally communicate and cooperate with peers 
2.	 orally report on progress and intermediate results to superiors 
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3.	 orally negotiate and communicate with clients 
4.	 communicate their ideas in written form, both for an academic and a general audience
5.	 give effective presentations

Learning skills: Students increase their own level of knowledge in a specialized sub-discipline of the 
field of Artificial Intelligence and/or Data Science. Students perform research into recent state of the 
art techniques. Students learn that the field of Artificial Intelligence and Data Science are constantly 
evolving beyond what is taught in class

Study material: Slides provided at the end of joint information sessions.  Literature provided by the 
project supervisors.

Assessment: Phase 1: project plan (15%); Phase 2: social media post+ presentation (15%); Phase 3: 
Project report + presentation (70%) 

Skill classes: A number of skill classes will be offered

ECTS: 6
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3.5 Electives courses Master Programme Artificial Intelligence 

Period 1.1 & 2.1

Data Mining (KEN4113)

Examiner:  Dr. E.N. Smirnov

Desired prior knowledge: Statistics and Basic Machine Learning

Prerequisites: None.

Description: Data mining is a major frontier field of machine learning. It allows extracting useful 
and interesting patterns and knowledge from large data repositories such as databases and the 
Web. Data mining  integrates techniques from the fields of databases, machine learning, statistics, 
and artificial intelligence. This course will present basic and state-of-the-art techniques of data 
mining. The lectures and labs will emphasize the practical use of the presented techniques and the 
problems of developing real data-mining applications. A step-by-step introduction to data-mining 
and python-based environments will enable the students to achieve specific skills, autonomy, and 
hands-on experience. A number of real data sets will be analyzed and discussed.
Formal models that will be investigated: Parametric and non-parametric models for supervised and 
unsupervised learning. 

Knowledge and understanding: Students will acquire knowledge on data preparation, data 
preprocessing, feature selection/generation, data mining, and model validation.

Applying knowledge and understanding: When confronted with real-life problems, students will 
be able to identify data-analysis tasks. Then, they will be able to apply data-mining techniques for 
supervised and unsupervised data-analysis. If necessary, students will be able to design data-mining 
algorithms specific for the tasks they have.

Making judgements: Students will be able to assess the quality of data-mining models, processes, 
results, and tools.
Communication: Students will be able to present the results of different stages of data-mining 
processes to specialists or non-specialists.

Learning skills: Students will be able to recognize their own lack of knowledge and understanding 
and take appropriate action such as consulting additional material or other sources of help.

Study material: Course notes, slides, and other information made available.

Assessment: Written exam + practical assignments.

Recommended Literature: Han, J., Pei, J., and Tong, H. (2022). Data Mining Concepts and Techniques, 
4th Edition, ISBN-10: 9780128117606, ISBN-13: 978-0128117606

Additional literature: Pang-Ning, T.,  Steinbach, M., Karpatne, A., and Kumar, V. (2018). Introduction 
to Data Mining, 2nd Edition, Pearson, ISBN-10: 0133128903, ISBN-13: 978-0133128901

ECTS: 6
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Stochastic Decision-Making (KEN4221)

Coordinator: Dr. Gijs Schoenmakers

Examiners: Dr. Gijs Schoenmakers & Dr. Dennis Soemers

Desired prior knowledge: Probability & Statistics.

Description: Any realistic model of a real-world phenomenon must take into account the possibility 
of randomness. That is, more often than not, the quantities we are interested in will not be 
predictable in advance but, rather, will exhibit an inherent variation that should be taken into 
account by the model. Mathematically, this is usually accomplished by allowing the model to be 
probabilistic in nature. In this course, the following topics will be discussed:
1.	 Basic concepts of probability theory: Probabilities, conditional probabilities, random variables, 

probability distribution functions, density functions, expectations and variances.
2.	 Finding probabilities, expectations and variances of random variables in complex probabilistic 

experiments.
3.	 Discrete and continuous time Markov chains and related stochastic processes like random walks, 

branching processes, Poisson processes, birth and death processes, queueing theory.
4.	 Markov decision problems.
5.	 Multi-armed bandit problems, bandit algorithms, contextual bandits, cumulative regret, and 

simple regret

Knowledge and understanding: In this course, the students acquire tools for modelling complex 
processes involving randomness, providing a basis for originality in developing and/or applying 
ideas in a research context.

Applying knowledge and understanding: When confronted with complex problems that involve 
probabilistic experiments, students have the tools to create and analyse appropriate models.

Making judgements: The students are able to analyse complex problems as stochastic processes 
and solve them. Furthermore, students can find optimal solutions in decision problems that are 
based on these stochastic processes.

Communication: The students will be able to communicate their conclusions and the underlying 
rationale to expert and non-expert audiences.

Learning skills: The students have obtained the skills to study related material in a largely
autonomous manner.

Study material: Introduction to Probability Models by Sheldon M. Ross (9 th or 10th ed.) + Lecture 
notes that are provided via Student Portal.

Exam: Written exam.

Recommended Literature: Probability: A Lively Introduction by Henk Tijms; Reinforcement Learning 
by Richard S. Sutton and Andrew G. Barto (2nd ed.) (chapter 2); Bandit Algorithms by Tor Lattimore 
and Csaba Szepesvári

ECTS: 6
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Signal and Image Processing (KEN4222)

Examiners: Dr. Joel Karel & dr. Pietro Bonizzi

Desired prior knowledge: Linear algebra, Calculus, basic knowledge of Matlab. Some familiarity with 
linear systems theory and transforms (such as Fourier and Laplace) is helpful.

Prerequisites: None.

Description: This course offers the student a hands-on introduction into the area of digital signal 
and image processing. We start with the fundamental concepts and mathematical foundation. This 
includes a brief review of Fourier analysis, z-transforms and digital filters. Classical filtering from a 
linear systems perspective is discussed. Next wavelet transforms and principal component analysis 
are introduced. Wavelets are used to deal with morphological structures in signals. Principal 
component analysis is used to extract information from high-dimensional datasets. We then discuss 
Hilbert-Huang Transform to perform detailed time-frequency analysis of signals. Attention is given 
to a variety of objectives, such as detection, noise removal, compression, prediction, reconstruction 
and feature extraction. We discuss a few cases from biomedical engineering, for instance involving 
ECG and EEG signals. The techniques are explained for both 1D and 2D (images) signal processing. 
The subject matter is clarified through exercises and examples involving various applications. In the 
practical classes, students will apply the techniques discussed in the lectures using the software 
package Matlab.

Knowledge and understanding: Students are able to explain fundamental concepts of signal and 
image processing and their mathematical foundation. They are able to 1) describe various types of 
filters and their properties, 2) explain orthogonal wavelet filter banks and describe their properties, 
3) explain a construction scheme and elicit a wavelet-based noise-filtering scheme, 4) explain 
principal component analysis and empirical signal processing techniques and how they complement 
the other techniques discussed.

Applying knowledge and understanding: Students are able to use the various techniques discussed 
during the lectures to solve real-world problems, such as being able to apply wavelet filtering and 
principal component analysis on various signals. They are also able to analyse a signal by using 
Matlab, and independently interpret the outcome of an analysis.

Making judgements: Students are able to assess what technique is suited for a signal processing 
problem at hand, and to independently and critically look at a signal or image, and understand if 
and what type of pre-processing is required.

Communication: Students are able to communicate signal and image processing techniques and 
strategies, and the results of their analyses to experts and non-experts.

Learning skills: Students are able to independently master signal and image processing techniques, 
from classical signal processing techniques to more empirical techniques, and they are able to stay 
up to date with the state of the art in the field.

Study material: Discrete Wavelet Transformations: An Elementary Approach with Applications, 
Patrick J. Van Fleet, Wiley, ISBN: 978-0-470-18311-3.
Additional material provided electronically on Student Portal.

Recommended literature: Principal Component Analysis, Ian T. Jolliffe, Springer, ISBN13: 978-
0387954424.

Exam: Written exam/Computer exam.

ECTS: 6
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Period 1.2 & 2.2

Advanced Natural Language Processing (KEN4259)

Examiners: Prof. dr. ir. J.C. Scholtes & Dr. Aki Härmä

Desired prior knowledge: None.

Prerequisites: None.

Description: How do I say, “Where is the next Italian restaurant” in Dutch? Can I actually use 
speech recognition instead of typing my question? Can I get a summary of today’s lecture? Can 
your chatbot assist me in finding the right information, answer my question or solve my problem? 
How do I know for sure that the chatbot does not hallucinate? How can I integrate multi-modal 
information in my language task? 

Computers able to answer these questions are a long-time dream of humankind. For many years, 
computers underperformed using linguistic skills compared to humans. However, the development 
of Large Language Models (LLM) allowed us to make huge progress and perform at the human level 
for tasks such as machine translation, Q&A, abstracting, speech recognition, summarization and 
having a conversation with a computer program. 

This course will provide the skills and knowledge to develop state-of-the-art (SOTA) solutions for 
these natural language processing (NLP) tasks.

After a short introduction to traditional grammatical and statistical approaches to NLP, the course 
will focus on deep learning techniques to solve these problems. In the first part of the course, we 
will investigate methods to model basic sequence labeling tasks like Part-of-Speech techniques. The 
second part of the lecture will focus on deep-learning models to solve many NLP tasks like machine 
translation, summarization and question answering.

In this course, major challenges when building the systems will be address: representing words 
in neural networks, neural network architectures to model language, methods to train complex 
models and algorithms to find the most probable output. Most of the lectures will focus on 
transformer-based models, both encoder, decoder and encoder-decoder models as well as multi-
modal approaches. In addition, we discuss important aspects of Large Language Models (LLM) such 
as quantitative measuring of quality, fine-tuning LLM’s, limitations to prompt engineering, ethics, 
energy consumption and eXplainable AI (XAI). 

The theory discussed in the course is supported by various (Python) tutorials where the students can 
experience the inner-workings of the algorithms themselves.  

Linear Algebra, Statistics, Deep Learning and Natural Language Processing play an important role in 
this course.

This course is complementary to the course Information Retrieval and Text-Mining. Overlap is 
reduced to the necessary minimum. Both courses can be followed in any particular order. In 
the Information Retrieval and Text Mining course we focus more on creating an optimal search 
experience, in the Advanced Natural Language Processing course, we do a deep dive into the 
algorithms and models used for different language-related problems such as machine translation, 
abstracting, and dialogs with chatbots. Tutorials are shared between the two courses. 
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Knowledge and understanding:  Student will be taught traditional approaches in NLP, as well as 
statistical models. Finally, state-of-the-art (SOTA) deep learning techniques for natural language 
processing (including multi-modal information), including understanding methods to evaluate 
the performance of such models. They will learn techniques to address the major challenges when 
building a natural language processing tool, including explainability and more efficient energy 
usage of such models. 

Appling knowledge and understanding: The achievements in deep learning have significantly 
improved the quality of state-of-the-art methods for natural language processing. With the 
knowledge acquired in the course, students will be able to build SOTA solutions. Students will also 
understand why deep learning models are outperforming traditional grammatical and statistical 
models and what the limitations and risks are of deep learning models in terms of applying 
explainable AI and more energy-efficient models. 

Making judgements: Students will be able to analyze the specific challenges of a task in NLP. Based 
on the gather knowledge on different ways to model tasks they are able to select and implement a 
fitting model to solve the task. 

Communication: Through reporting on tutorials, students will be enabled to communicate their 
findings and explain the rationale behind their choices in deep learning techniques for natural 
language processing.

Learning skills: After successful completion of the course, students will be able to develop natural 
language processing tools and perform research on new ideas in the field.

Study material: Mostly based on the lecture notes and the provided material including recent papers 
published in this field. We will also provide references to a number of good books that are on-line 
available for more background information. 

Recommended literature: Papers published in top international conferences and journals in machine 
learning field. 

Assessment: Participation in the Tutorials (30%), final exam (70%). The exam is open book.

ECTS: 6

Network Science (KEN4275)

Coordinator: Adriana Iamnitchi

Desired prior knowledge: Introductory knowledge of programming for data analysis, particularly in 
Python; algorithms; algorithmic complexity. Introductory courses in algorithms, data structures, and 
data analytics.

Prerequisites: None.

Description: Many aspects of everyday life and science can be represented as networks: social 
networks represent relationship (links) between people (nodes); brain activity can be represented 
via synapses (links) between neurons (nodes); the street map is formed of roads (links) that connect 
at intersections (nodes); authors of scientific papers connect to each others in a citation network, 
with directed links from the paper cited to the paper citing it; communication networks connect 
routers via physical or logical links; etc. Network analysis plays a significant role in the “big data” 
analytics because of size, data velocity, or computational complexity. 
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This course focuses on the study of network structures and dynamic processes on networks using 
real data from various disciplines, including socio-technological platforms, biology, social science, 
and economics. Topics cover the analysis and modeling of complex networks, network dynamics, 
community detection, network resilience and contagion, as well as processing of network structures 
for machine learning tasks.

Formal models that will be investigated: random graphs, scale-free networks, preferential 
attachment model, Watts and Strogatz model, epidemics models.

Knowledge and understanding: Students will acquire a solid understanding of the key concepts and 
terminology in network science, will comprehend the theoretical underpinnings of various network 
models, and recognize relevant network characteristics across different contexts and applications.

Applying knowledge and understanding: Students will employ computational tools to model, 
analyze, and visualize networks from various real-world sources, and implement simulations to 
study network dynamics and evolution. 

Making judgements: Students will critically assess different network models and their applicability 
to real-world problems. They will evaluate the implications of network structure on system 
dynamics. They will evaluate the benefits and limitations of various network embedding techniques 
for machine learning tasks. 

Communication: Students will be able to present complex network concepts clearly to both 
specialist and non-specialist audiences and collaborate effectively in teams on network analysis 
projects.

Learning skills: In addition to the guiding material formally provided in the course, students will 
research independently from various sources. 

Study material: Will be provided throughout the lecture.

Assessment: Assignments and group project. 

Recommended literature: “Networks, Crowds, and Markets: Reasoning About a Highly Connected 
World” by David Easley and Jon Kleinberg.

Additional literature: Graph Theory and Complex Networks: An Introduction by Maarten van Steen 

ECTS: 6

Period 1.4 & 2.4

Explainable AI (KEN4246)

Coordinators: Prof. Dr. Nava Tintarev & Dr. Tjitze Rienstra

Examiners: Prof. Dr. Nava Tintarev & Dr. Tjitze Rienstra

Tutor: Aashutosh Ganesh

Desired prior knowledge: Data Analysis and Data Mining or ACML
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Prerequisites: None. 

Description: A key component of an artificially intelligent system is the ability to explain to a 
human agent the decisions, recommendations, predictions, or actions made by it and the process 
through which they are made. Such explainable artificial intelligence (XAI) can be required in a wide 
range of applications. For example, a regulator of waterways may use a decision support system 
to decide which boats to check for legal infringements, a concerned citizen might use a system to 
find reliable information about a new disease, or an employer might use an artificial advice-giver to 
choose between potential candidates fairly. For explanations from intelligent systems to be useful, 
they need to be able to justify the advice they give in a human-understandable way. This creates a 
necessity for techniques for automatic generation of satisfactory explanations that are intelligible 
for users interacting with the system. This interpretation goes beyond a literal explanation. 
Further, understanding is rarely an end-goal. Pragmatically, it is more useful to operationalize the 
effectiveness of explanations in terms of a specific notion of usefulness or explanatory goals such 
as improved decision support or user trust. One aspect of intelligibility of an explainable system 
(often cited for domains such as health) is the ability for users to accurately identify, or correct, 
an error made by the system. In that case it may be preferable to generate explanations that 
induce appropriate levels of reliance (in contrast to over- or under-reliance), supporting the user in 
discarding advice when the system is incorrect, but also accepting correct advice. 

The following subjects will be discussed:
1.	 Intrinsically interpretable models, e.g., decision trees, decision rules, linear regression.
2.	 Identification of violations of assumptions, such as distribution of features, feature interaction, 

non-linear relationships between features; and what to do about them.
3.	 Model agnostic explanations, e.g., LIME, scoped Rules (Anchors), SHAP (and Shapley values)
4.	 Ethics for explanations, e.g., fairness and bias in data, models, and outputs. 
5.	 Symbolic approaches to AI 
6.	 (Adaptive) User Interfaces for explainable AI
7.	 Evaluation of explanation understandability

Knowledge and understanding: Students can explain the difference between different explanation 
approaches (e.g., global versus local models) and can identify which are suitable to use based on 
underlying assumptions and relative advantages and limitations.

Applying knowledge and understanding: Students can critically choose and apply XAI methods. 
Students can formulate evaluation protocols to validate the understandability of explanations, 
demonstrating awareness of the ethical, normative, and social consequences of their applications.

Making judgements: Students will be able to critically evaluate the quality (rigor of methodology), 
and ethical consequences, of approaches (systems or scientific publications) based on the XAI 
techniques taught.

Communication: Students will be able to communicate their ideas effectively in written form. They 
will be able to actively contribute to group-wise communication, and in both oral and written form 
present their models and outputs to specialists.

Learning skills: Students will be able to familiarize themselves, and critically assess XAI techniques 
beyond the scope of the course in order to solve a problem.

Study material: Course notes, required reading of scientific articles.

Assessment: Group project and individual written assignment
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Recommended literature: 
•	 Molnar, Christoph. Interpretable Machine Learning (second edition). Lulu.com, 2022 (available 

free online)
•	 Rothman, Denis. Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and 

integrate reliable AI for fair, secure, and trustworthy AI apps, Packt, 2020.

ECTS: 6

Dynamic Game Theory (KEN4251)

Examiners: Prof. dr. Frank Thuijsman & dr. Monica Salvioli 

Desired prior knowledge:  Students are expected to be familiar with basic concepts from linear 
algebra, calculus, Markov chains and differential equations.

Prerequisites: None.

Description: The course will focus on non-cooperative games and on dynamic games in the 
following order: matrix and bimatrix games, repeated games, differential games, specific models 
of stochastic games, Stackelberg games, games in extensive form and evolutionary games. These 
are games in which the players are acting as strategic decision makers, who cannot make binding 
agreements to achieve their goals. Instead, threats may be applied to establish stable outcomes. 
Besides, relations with population dynamics and with “learning” will be examined. Several examples 
will be taken from biological settings.

Knowledge and understanding: Students are able to recognize and classify the main types of 
dynamic games, i.e. repeated games, stochastic games, Stackelberg games, differential games, and 
evolutionary games and formulate the main solution concepts value, optimal strategies, Nash- and 
Stackelberg equilibrium

Applying knowledge and understanding: Students are able calculate solutions of the different types 
of dynamic games.

Making judgements: Students are able to explain advantages and disadvantages of different 
solution concepts. They are able to judge correctness of solutions presented.

Communication: Students are able to explain and defend correctness of their solutions.

Learning skills: By the end of the course, students will be able to autonomously and critically reflect 
upon the pros and cons of different types of games for modelling competition and cooperation. This 
includes considerations on the computational aspects with respect to different solution concepts.

Study material: Handouts will be provided.

Exam: There will be a closed book written exam at the end of the course.

ECTS: 6
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Planning and Scheduling (KEN4253)

Examiner: Dr. Steven Kelk

Desired prior knowledge: Data Structures & Algorithms. Discrete Mathematics. Graph Theory

Prerequisites: None.

Description: In many real-world processes, particularly in industrial processes and logistics, decisions 
need to be taken about the time of the completion of (sub)tasks, and the decision about what 
production machines complete the tasks. There are often constraints on the order in which tasks, 
or ‘jobs’ can be performed, and there are usually capacity constraints of the machines. This leads to 
natural, industrially critical optimization problems. For example, a company might choose to buy 
many machines to process jobs, but then there is a risk that the machines will be underused, which 
is economically inefficient. On the other hand, too few machines, or an inappropriate ordering of 
tasks,  may lead to machines spending a significant amount of time standing idle, waiting for the 
output of other machines, which are overcrowded with tasks. In this course, we look at various 
mathematical models and techniques for optimizing planning and scheduling problems, subject 
to different optimality criteria. We will discuss, among others, single-machine models, parallel-
machine models, job-shop models, and algorithms for planning and scheduling (exact, approximate, 
heuristic) and we also touch upon the computational complexity (distinguishing between ‘easy’ and 
‘difficult’ problems) of the underlying problems. Last but not least, we will also introduce integer 
linear programming as a uniform and generic tool to model and solve planning and scheduling 
problems.

Knowledge and understanding: Students will possess the mathematical and algorithmic tools 
to model and solve planning/scheduling problems. Students will be able to recognize real-world 
problems in the unified theory and established language of planning and scheduling. 

Applying knowledge and understanding: Students will be able to apply the new techniques to 
various problems arising in real-world applications. Students will be able to deploy the standard 
algorithmic techniques, and be able to design new algorithmic solutions, and to argue about their 
performance properties.

Making judgements: Students will understand under which circumstances different planning/
scheduling problems are computationally tractable, and will judge algorithmic technique can be 
used to exactly or approximately solve these problems.

Communication: Students will be able to analytically argue about correctness of the used 
algorithmic approaches. Students will be able to explain modelling approaches to planning and 
scheduling problems in the language of the theory of planning and scheduling.

Learning skills: Students will enhance their study skills such as time management, effective 
reading, critical thinking and reading, exact and unambiguous writing and formulating of ideas and 
statements, and reflection on marked work. Along the way, students will improve general learning 
skills such as self-motivation, careful listening and giving instructions, and openness to new 
knowledge. Students will also be exposed to autonomous self-study.

Study material: Appropriate study material will be provided throughout the course.

Assessment: Written exam (75%) at the end of the course, and graded exercises (25%) throughout 
the course.

ECTS: 6
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Building and Mining Knowledge Graphs (KEN4256)

Examiner: Prof. dr. Michel Dumontier

Desired prior knowledge: Introduction to Computer Science

Prerequisites: None.

Description: Knowledge graphs are, seen through a semantic-web lens, large-scale, machine-
processable representations of entities, their attributes, and their relationships. Knowledge graphs 
enable both people and machines to explore, understand, and reuse information in a wide variety of 
applications such as answering questions, finding relevant content, understanding social structures, 
and making scientific discoveries. However, the sheer size and complexity of these graphs present a 
formidable challenge particularly when mining across different topic areas.

In this course, we will examine approaches to construct and use knowledge graphs across a diverse 
set of applications using cutting-edge technologies such as machine learning and deep learning, 
graph databases, ontologies and automated reasoning, and other relevant techniques in the area of 
data mining and knowledge representation.

Knowledge and understanding: Students will be able to:
•	 Define and describe the nature and attributes of a Knowledge Graph
•	 Identify and describe the components of a Knowledge Graph
•	 Distinguish between different representations for Knowledge Graphs
•	 Describe applications of Knowledge Graphs
•	 Identify advantages and disadvantages of Knowledge Graphs as compared to other formalisms
•	 Describe and execute approaches to construct and maintain Knowledge Graphs from structured 

and unstructured sources, across different domains
•	 Construct and query Knowledge Graphs to answer questions about their content using open 

standards such as RDF and SPARQL
•	 Use Large Language Models to construct Knowledge Graphs, and to retrieve their contents
•	 Execute link prediction and associated graph mining techniques to enrich information in 

Knowledge Graphs
•	 Describe the FAIR principles and construct Knowledge Graph metadata using available standards
•	 Describe Knowledge Graph quality metrics and evaluate the quality of a Knowledge Graph
•	 Develop own Knowledge Graph solution for a problem of interest

Applying knowledge and understanding: Students will be able to identify requirements and steps 
to convert knowledge in traditional data formats to Knowledge Graph formats. Students will 
also be able to implement such strategies. Students will be able to query Knowledge Graphs (for 
instance using SPARQL query language) to answer basic to intermediately advanced questions. 
Students will be able to implement basic reasoning strategies on Knowledge Graphs to answer 
intermediately advanced questions, which cannot be answered by SPARQL queries alone. Students 
will be able to implement popular methods to integrate different data sources by transferring them 
into a Knowledge Graph. Students will be able to enrich existing Knowledge Graphs with missing 
information using basic predictive algorithms. Students will be able to perform basic data quality 
assessment on Knowledge Graphs. Students will be able to assess the degree of compliance that 
Knowledge Graphs have with FAIR principles.

Making judgements: Students will be able to select which tools are most suitable for constructing, 
querying, visualising & reasoning with Knowledge Graphs. Students will be able to differentiate 
between different types of Knowledge Graphs, according to their representation, coverage and 
content. Students will be able to select which Knowledge Graph is appropriate for answering a 
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particular question. Students will be able to diagnose incompleteness in a Knowledge Graph with 
respect to answering a particular question. Students will be able to evaluate the data quality and 
FAIRness of a Knowledge Graph.

Communication: Students will be able to explain the advantages of representing information on 
the web in Knowledge Graphs. Students will be able to communicate the steps required to convert 
information to a Knowledge Graph format. Students will be able to communicate to non-experts 
the main content and representational components of a Knowledge Graph. Students will be able to 
outline to non-experts the steps required to answer a question by querying a Knowledge Graph.

Learning skills: Students will be able to reflect critically on the challenges and open problems 
remaining in Knowledge Graphs research. Students will be able to formulate and propose strategies 
to answer complex questions using Knowledge Graphs. Students will be able to assess the feasibility 
of different combinations of methods for answering questions using Knowledge Graphs.

Study material: Slides for the labs and lectures will be released on Canvas just before the respective 
session in PDF format. 

Assessment: Individual project for application of knowledge and three group assignments to 
demonstrate understanding of core concepts. Assessments will be released in PDF format on Canvas 
according to the dates indicated in the previous slide for evaluation.

Recommended literature: Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., ... 
& Zimmermann, A. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4), 1-37.
Additional literature: A Semantic Web Primer. 3rd Edition. Grigoris Antoniou, Paul Groth, Frank van 
Harmelen and Rinke Hoekstra. 2012. MIT Press, ISBN: 9780262018289.
Semantic Web for the Working Ontologist. 3rd Edition. James Hendler, Fabien Gandon, Dean 
Allemang. 2020. Morgan Kaufmann. ISBN-13: 978-1450376174; ISBN-10: 1450376177.
Practical RDF. Shelley Powers. 2003. O’Reilly Media, Inc. ISBN: 9780596002633.
Learning SPARQL. Bob DuCharme. 2011. O’Reilly media, Inc. ISBN: 9781449306595.
Programming the Semantic Web. Toby Segaran, Colin Evans, Jamie Taylor. 2009. O’Reilly Media, Inc. 
ISBN: 9780596153816.

ECTS: 6
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Period 1.5 & 2.5

Information Retrieval and Text Mining (KEN4153)

Examiner: Prof dr. ir. J.C. Scholtes

Desired prior knowledge: None.

Prerequisites: None.

Description: Normal search is about “Finding the needle in the haystack”. This course focusses on a 
more complex problem: “How does the needle look like and where is the haystack? Also explain me 
why!”

Building a full-text search engine may look trivial, but it is not! How do you search hundreds of 
billions of documents that can be located anywhere, with sub-second responds times? How do you 
find exactly what you are looking for without missing relevant information or having to plough 
through hundreds of irrelevant documents?  How can you find if you do not know exactly what you 
are looking for? How can you find information which is deliberately hidden? How do you know that 
your search engine has given you the right information? Where does it come from? Is the answer 
factually correct? 

In this course, we will teach you how to address these questions in three steps: (1) how is a search 
engine is constructed, optimized and used effectively, (2) How can techniques from the word 
of text-mining, information extraction, text classification, clustering, topic modeling and data 
visualization add to a better search experience, and (3) What is the best way to integrate chatbots 
with search engines. How to best guarantee factuality, avoid hallucinations and provide provenance 
and explainability of the chatbots’ recommendations.

Linear Algebra, Statistics, Deep Learning and Natural Language Processing play an important role in 
this course.

This course is complementary to the course Advanced Natural Language Processing (ANLP). Overlap 
is reduced to the necessary minimum. Both courses can be followed in any particular order. In 
the Information Retrieval and Text Mining course we focus more on creating a optimal search 
experience, in the Advanced Natural Language Processing course, we do a deep dive into the 
algorithms and models used for different language-related problems such as machine translation, 
abstracting, and dialogs with chatbots. Tutorials are shared between the two courses. 

Knowledge and understanding: The student will be able to select, understand and apply different 
phases and methods used to create applications that exhibit an optimal search experience or 
provide excellent analytical insights for natural language. In addition, the student learns to evaluate 
the quality of such methods according to best-practice standards as used in the field.

Applying knowledge and understanding: Students will be able to recognize applications of text 
mining, information retrieval and conversational AI in different domains such as consumer search, 
legal services, medical research, regulatory oversight, compliance, digital humanities, and customer 
services. After the course, the student can formulate an opinion or course of action when dealing 
with text-based AI-problems based on incomplete, limited and in part unreliable information. 
After the course, students can apply their knowledge and understanding in a manner that shows a 
scientific approach to their work or vocation. They are able to handle complex and ill-defined text-
based problems for which it is not a priori known if there is an appropriate solution, they know how 
to acquire the necessary information to solve the sub-problems involved, and they know how to 
proceed with problems for which there is no standard or reliable route to the solution.
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Making judgements: Upon completion of the course, students are able to recommend the most 
appropriate methods from the fields of text mining, information retrieval and conversational AI 
when confronted with problems involving search and analysis of textual unstructured data.

Communication: Students are able to communicate the (dis)advantages of several methods from 
the field of text mining and information retrieval to both an audience of non-experts.

Learning skills: After the course, the student has developed those learning skills that are necessary 
for a successful further career in text mining or information retrieval at the highest professional 
level. The student will be able to continue to develop their text-mining and information retrieval 
skills. The student is able to detect missing knowledge and abilities and to deal with them 
appropriately by finding and consulting resources that can help them to fill the gaps and new 
developments.

Study material: A syllabus and copies of the course slides will be used.

Recommended literature (not mandatory): Introduction to Information Retrieval. Christopher D. 
Manning, Prabhakar Raghavan and Hinrich Schütze. Cambridge University Press, 2008. In bookstore 
and online: http://informationretrieval.org and Feldman, R., and Sanger, J. (2006). The Text Mining 
Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press. 

Assessment: The result of various Colab tutorials and a project contributes 30% to the final 
examination of the course. The other 70% is determined by the theoretical exam. The theoretical 
exam is open book. For the project, students can select a research topic and a text corpus from 
the provided list (or another relevant open source collection) and implement a number of relevant 
search, text-mining or conversational AI operations by using the methods discussed in the course. 
The delivery of the project are the results of the experiments (presented at the end of the course) 
and a report discussing the methods used and the quantitative quality of the efforts undertaken. 

ECTS: 6

Introduction to Quantum Computing for AI and Data Science (KEN4155)

Examiners: Dr. Menica Dibenedetto & Dr. Georgios Stamoulis

Desired prior knowledge: Probability theory, linear algebra, design and analysis of algorithms

Prerequisites: None.

Description: In this course, we lay down the foundations and basic concepts of quantum computing. 
We will use the mathematical formalism borrowed from quantum mechanics to describe quantum 
systems and their interactions. We introduce the concept of a quantum bit and discuss different 
physical realizations of it. We then introduce the basic building blocks of quantum computing: 
quantum measurements and quantum circuits, single and multi-qubit gates, the difference 
between correlated (entangled) and uncorrelated states and their representation, quantum 
communication, and basic quantum protocols and quantum algorithms. Finally, we discuss the 
different types of noise involved in real quantum computers (coherent and incoherent errors, state 
preparation, projection and measurement) and their effect on performance, and outline current 
efforts for mitigating the issues.

Knowledge and understanding: Students will learn the fundamental principles and concepts behind 
quantum computing, protocols, and algorithms. Students will understand the differences between 
classical and quantum computation, and where the (theoretical) computational power of quantum 
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machines comes from. Students will also get to understand the current challenges in building and 
using quantum computers.

Applying knowledge and understanding: Students will be able to apply existing quantum 
algorithms as black-box to various simple computational problem. Students will further be able to 
analyse simple quantum algorithms for different computational problems.

Making judgements: Students will be able to judge how the potential computational power of 
quantum computing can be leveraged, and how it can be applied to other fields in a beneficial way.

Communication: Students will be able to discuss quantum computation critically and judge 
not only its benefits but, equally important, its shortcomings. Students will especially be able to 
communicate potential benefits of quantum computation to the fields of artificial intelligence and 
data science.

Learning skills: Students will practice learning entirely new computational concepts, and how to 
relate existing concepts (classical computation) to new concepts (quantum computation). Students 
will learn to critically reflect on  both the scientific literature and the societal expectations. Students 
will learn to self-study from state-of-the-art research articles, when classical text-books are not 
available.

Study material: To be announced.

Exam: Written exam (100%)

ECTS: 6

Reinforcement Learning (KEN4157)

Coordinators: Dr. ir. Kurt Driessens & Dr. Dennis Soemers 

Examiners: Dr. ir. Kurt Driessens & Dr. Dennis Soemers

Desired prior knowledge: Machine Learning

Prerequisites: None.

Description: Reinforcement learning is a type of machine learning problem in which the learner 
gets a (delayed) numerical feedback signal about its demonstrated performance.  It is the toughest 
type of machine learning problem to solve, but also the one that best encompasses the idea of 
artificial intelligence as a whole. In this course we will define the components that make up a 
reinforcement learning problem and will see what the important concepts are when trying to solve 
such a problem, such as state and action values, policies and performance feedback.  We will look 
at the different properties a reinforcement learning problem can have and what the consequences 
of these properties are with respect to solvability.  We will discuss value based techniques as well 
as direct policy learning and learn how to implement these techniques. We will study the influence 
of generalisation on learning performance and see how supervised learning (and specifically deep 
learning) can be used to help reinforcement learning techniques tackle larger problems. We will also 
look at the evaluation of learned policies and the development of performance over time.   
Formal models that will be investigated: Markov Decision Processes
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Knowledge and understanding: Students will be able to explain the setup of a reinforcement 
learning problem and list its formal components, explain the difficulties faced when adding 
function approximation to reinforcement learning, explain the origins of the learning signal for 
policy gradient methods for reinforcement learning.

Applying knowledge and understanding: Students can implement and apply online and offline 
tabular techniques of value based reinforcement learning algorithms, apply the use of function 
approximation in value based reinforcement learning algorithms, implement and apply policy 
gradient methods for discrete and continuous action tasks and deep learning methods to 
reinforcement problems.

Making judgements: Students will be able to judge the suitability of reinforcement learning 
techniques as a solution for an AI problem, choose/select between exploration and exploitation 
tradeoff methods suited to the problem faced, interpret and judge the results of a reinforcement 
learning agent.

Communication: Students will gain a working knowledge of reinforcement learning as a problem, 
and of the state of the art in solution techniques and will be able to motivate his/her choices 
concerning the application of these techniques.

Learning skills: Students will learn that the state of the art in reinforcement learning continues 
to develop at a rapid pace and that becoming and staying an expert in the domain will require 
continued learning.

Study material: Course slides to support the lectures; supplementary material consisting of research 
papers and book chapters.

Assessment: Assessment for this course is based on the construction of a portfolio with which 
students prove that they attained all learning goals, at which point they will pass the course. The 
level of a passing grade is determined by the quality of a large final research and implementation 
assignment.   

Recommended literature: Reinforcement Learning: An Introduction by R. Sutton and A. Barton

Additional literature: Algorithms for Reinforcement Learning by C. Szepesvári; Reinforcement 
Learning and Optimal Control by D. Bertsekas

ECTS: 6

Computer Vision (KEN4255)

Coordinator & examiner: Dr. Mirela Popa

Tutors: Subilal Vattimunda Purayil, Aashutosh Ganesh

Desired prior knowledge:  Basic knowledge of Python, linear algebra and machine learning. This 
course offers the basics on image processing although prior knowledge is also a plus.

Prerequisites: None.

Description: Can we make machines look, understand and interpret the world around them? Can 
we make cars that can autonomously navigate in the world, robots that can recognize and grasp 
objects and, ultimately, recognize humans and communicate with them? How do search engines 
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index and retrieve billions of images? This course will provide the knowledge and skills that are 
fundamental to core vision tasks of one of the fastest growing fields in academia and industry: 
visual computing. Topics include introduction to fundamental problems of computer vision, 
mathematical models and computational methodologies for their solution, implementation of real 
life applications and experimentation with various techniques in the field of scene analysis and 
understanding. In particular, after a recap of basic image analysis tools (enhancement, restoration, 
color spaces, edge detection), students will learn about feature detectors and trackers, fitting, image 
geometric transformation and mosaicing techniques, texture analysis and classification using 
unsupervised techniques, face analysis, deep learning based object classification, detection and 
tracking, camera models, epipolar geometry and 3D reconstruction from 2D views. 

Knowledge and understanding: Students will be able to apply the most suitable techniques 
for image pre-processing (e.g. enhancement, restoration), feature extraction, texture analysis, 
perspective geometry, camera models and topics on object recognition. In addition, they will be able 
to identify the most suitable techniques in a series of visual computing problems.

Applying knowledge and understanding: Students will be able to choose and/or construct solutions 
in a variety of professional/vocational contexts requiring image processing and computer vision 
(robotics, manufacturing, AI, web applications, surveillance). They will be able to build and assess 
methodologies for handling real-world complex problems in computer vision, making use of pre-
existing data for training their models.

Making judgements: Students will be able to choose and combine methods to tackle real-world 
computer vision problems, captured in real-life settings and having no obvious solutions. They 
will be able to propose and build techniques combining computer vision methods with machine 
learning instruments for scene understanding and object recognition.

Communication: Through small research projects, students will be able to communicate their 
findings and explain the rationale behind their choices in computer vision techniques for image/
video analysis.

Learning skills: After successful completion of the course, students will be able to analyze images 
and videos and retrieve or process content in order to derive useful information, applicable in a 
variety of domains (e.g. satellite imagery, surveillance, robotics, medical imaging, ambient assisted 
living).

Study material: A syllabus and copies of the course slides will be used along with the recommended 
literature.

Assessment: Written exam (50%) and two assignments (50%)

Recommended literature: 
•	 “Computer vision: algorithms and applications”. Szeliski, Richard. Springer Science & Business 

Media, 2010 (available online)
•	 “Computer Vision: A Modern Approach, 2nd Edition”. David A. Forsyth, University of Illinois at 

Urbana-Champaign .Jean Ponce, Ecole Normale Superieure, Paris
•	 “Computer Vision: Models, Learning and Inference”, Simon J.D. Prince 2012.

Additional literature:
•	 “Digital Image Processing”, Rafael C. Gonzalez & Richard E. Woods, Pearson, 3rd Edition, 2016. 
•	 “Machine Vision: Automated Visual Inspection and Robot Vision”, David Vernon, Prentice Hall,  

(available online at: https://homepages.inf.ed.ac.uk/rbf/BOOKS/VERNON/)
•	 OpenCV/Pytorch/Tensor Flow tutorials (https://docs.python.org/3/tutorial/,https://pytorch.org/

tutorials/,https://colab.research.google.com, https://docs.opencv.org/4.x/d9/df8/tutorial_root.
html)

ECTS: 6
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Period 2.1

Mathematical Optimization (KEN4211)

Coordinator & examiner: Dr. Pieter Collins

Desired prior knowledge: Calculus, Linear Algebra, Linear Programming

Prerequisites: None.

Description: Optimization is the subject of finding the best or optimal solution to a problem from 
a set of potential or feasible solutions. Optimization problems are fundamental in all forms of 
decision-making, since one wishes to make the best decision in any context, and in the analysis 
of data, where one wishes to find the best model describing experimental data. This course treats 
two different areas of optimization: nonlinear optimization and combinatorial optimization, 
building on knowledge of linear programming using the simplex algorithm. Together, nonlinear 
and combinatorial optimization cover a wide range of real life optimization problems. Nonlinear 
optimization deals with the situation that there is a continuum of available solutions. A best 
solution is then usually approximated with one of several available general purpose algorithms, 
such as Brent’s method for one-dimensional problems, (quasi-)Newton and conjugate gradient 
methods for unconstrained problems, and Lagrangian methods, including active-set methods, 
sequential quadratic programming and interior-point methods for general constrained problems. 
Combinatorial optimization deals with situations that a best solution from a discrete set of available 
choices must be found. A variety of techniques, such as linear programming, branch and cut, 
Lagrange relaxation and approximation algorithms are employed to tackle this type of problem. 
Throughout the course, we aim to provide a coherent framework for the subject, with a focus on 
optimality conditions (notably the Karush-Kuhn-Tucker conditions), Lagrange multipliers and duality, 
relaxation and approximate problems, and on convergence rates and computational complexity.  
The methods will be illustrated by in-class computer demonstrations, exercises illustrating the main 
concepts and algorithms, modelling and computational work on case studies of practical interest, 
and a discussion of advanced stochastic and batch optimization methods for machine-learning.

Formal models that will be investigated: Unconstrained and constrained nonlinear programming 
problems; integer-linear programming problems.

Knowledge and understanding: By the end of this course, students will have a strong foundation 
in nonlinear and combinatorial optimization. You will be able to formulate real-life problems as 
optimization problems. You will understand optimality conditions, including the Karush-Kuhn-
Tucker conditions and be able to test for optimality. You will know how to solve a variety of general 
optimization problems, including constrained nonlinear problems, and (mixed-)integer linear 
problems. You will understand notions of duality and Lagrange multipliers, and be able to apply 
techniques based on relaxation and approximation. 

Applying knowledge and understanding: Students will know the advantages and disadvantages of 
different methods, and be able to choose an appropriate method for a given problem. You will be 
able to implement and test optimization algorithms on a computer. You will be able to apply your 
knowledge to the solution of practical problems and in developing new efficient algorithms.

Making judgements: Students will be able to select an appropriate solution method for a given 
optimization problem, and judge the quality of the solution obtained.

Communication: Students will be able to discuss the development and use of optimization 
algorithms.
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Learning skills: Students will learn how to develop and implement mathematical methods for 
optimization, select and evaluate algorithms, and formulate mathematical model of real-world 
problems.

Study material: Lecture notes, handouts.

Exam: Written examination, closed book (100%).

Recommended literature: J. Nocedal and S.J. Wright, “Numerical Optimization”, Springer, 2006; ISBN: 
978-0-387-30303-1. C.H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization: Algorithms 
and Complexity”, Dover Publications, 1998; ISBN: 978-0-13152-462-0. W.J. Cook, W.H. Cunningham, 
W.R. Pulleyblank and A. Schrijver, “Combinatorial Optimization”, Wiley-Interscience, 1998; ISBN: 978-
0-47155-894-1.

ECTS: 6

Quantum Algorithms (KEN4235)

Examiner: Dr. Georgios Stamoulis 

Desired prior knowledge: Fundamentals of Quantum Computation, Very Good command of Linear 
Algebra, Algorithms and Complexity 

Prerequisites: Introduction to Quantum Computing for AI and Data Science 

Description: This course will provide a thorough examination of the most important Quantum 
Algorithms. We will see how the quantum mechanical formalism gives rise to a new algorithmic 
design paradigm with the potential of performing certain computational tasks faster than we 
could do using a classical computer. The course will start with some basic algorithms like Bernstein-
Vazirani and Simon’s algorithm, then we will move on to Quantum Fourier Transform and Phase 
Estimation. Then, a thorough discussion of Shor’s celebrated algorithm for factoring will follow, 
together with a detailed coverage of Grover’s unstructured search algorithm, its optimality, 
adaptations, and applications. Further, we will move on to the HHL algorithm for solving systems 
of linear equations, a crucial component of many quantum algorithms, including Machine Learning 
quantum algorithms. In the last part of the course, we will present algorithms for quantum 
simulation, discuss quantum walks, and basics of quantum complexity theory by introducing and 
discussing the BQP and QMA complexity classes. 

Knowledge and understanding: Students will learn how and why certain computational tasks can 
be performed faster in a quantum computer, what are the major techniques used in the design of 
such algorithms and, equally important, what are the limitations of the quantum algorithm design.  

Applying knowledge and understanding: Students will be able to apply these theoretical 
techniques to design and analyze algorithms for many problems that could benefit from a quantum 
computation point of view. 

Making judgements: Students will be able to judge whether proposed quantum algorithms indeed 
offer speedups over classical ones and how they may be able to achieve that. 

Communication: Students will practice technical communication of research work in this area, 
describing and critically evaluating the work’s contributions. 
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Learning skills: Students will learn from lectures/textbook/notes and then use this knowledge to 
read relevant research papers. 

Study material: Lectures, textbook. 

Assessment: 75% final exam, 25% in-class presentation summarizing a topic of relevant interest in 
class. 

Recommended literature: Quantum Computation and Quantum Information: 10th Anniversary 
Edition Anniversary Edition, Michael A. Nielsen, and Isaac L. Chuang  

Additional literature: Papers, notes and other relevant material will be distributed in class. 

ECTS: 6

Period 2.2

Quantum AI (KEN4236)

Coordinator & examiner: Dr. Menica Dibenedetto 

Tutor: Vincenzo Lipardi

Desired prior knowledge: Linear Algebra, Classical Machine Learning

Prerequisites: Introduction to Quantum Computing for AI and Data Science

Description: This course explores the groundbreaking intersection of quantum computing and 
artificial intelligence, focusing on how quantum technologies can potentially revolutionize AI 
paradigms. The curriculum delves into quantum algorithms tailored for AI tasks, addressing 
complex problems that are currently intractable for classical computers. Students will gain an 
understanding of how quantum principles can enhance machine learning algorithms, improve 
optimization tasks, and facilitate data processing capabilities. Through theoretical lessons and 
practical laboratory sessions, students will learn about quantum mechanics fundamentals 
applicable to AI, quantum circuit design, and quantum algorithm development. Special emphasis 
will be placed on hybrid models that integrate classical and quantum computing techniques to 
solve real-world problems. The course will provide a mix of both theoretical and technical insights, 
as well as practical implementation details by using the main quantum programming languages 
and quantum software available. 

Formal models that will be investigated: Various QAI algorithms and their possible applications 
for near term devices will be presented. The students will be guided through the steps of 
creating effective quantum models for supervised and unsupervised tasks and its evaluation in 
the near-term devices. Discussions will include essential quantum AI algorithms and quantum 
generalizations of classical learning models. Various quantum machine learning models including 
quantum neural networks, quantum support vector machines and quantum kernel estimator will 
be discussed in detail. Quantum algorithms for decision problems based on Hamiltonian time 
evolution, quantum search models based on Grover algorithm and quantum game theory will 
be introduced. A significant focus will be on developing efficient methods for encoding data into 
quantum states, one of the main problems in the current state of machine learning. We will then 
explore quantum machine learning algorithms applied to state preparation focusing on loading the 
underlying probability distribution of the dataset, as Quantum Generative Adversarial Networks 
(GANs) and Quantum Boltzmann Machine. 
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Knowledge and understanding: Students will gain a deep understanding of the intersection 
between artificial intelligence and quantum computing, learning to assess the capabilities and 
limitations of current quantum technologies in enhancing AI applications, exploring different 
quantum machine learning models. 

Applying knowledge and understanding: Learners will apply theoretical concepts in practical 
settings, developing and implementing quantum algorithms and models that can be applied to 
machine learning and optimization real-world problems.

Making judgements: Students will evaluate the effectiveness of quantum AI solutions, making 
informed decisions about when and how to implement these technologies. This course will 
formulate and answer the questions: “how quantum computing can provide a computation boost to 
AI, enabling it to tackle more complex problems?” and “how can AI produce functional applications 
with quantum computers?”.

Communication: Participants will enhance their ability to articulate complex quantum AI concepts 
clearly and effectively to a diverse audience, including those without a background in quantum 
physics.

Learning Skills: Learners will develop critical thinking and problem-solving skills in quantum 
computing and AI, fostering a mindset of continuous learning and adaptation to new technologies.

Study Material: Quantum Machine Learning Texts, Online Quantum Computing Simulators, Peer-
reviewed Journal Articles

Assessment: Assignment based

Recommended literature: “Machine Learning with Quantum Computers” by M. Schuld, F. 
Petruccione, Second Edition

Additional literature: Research articles and papers will be provided throughout the course.

ECTS: 6

Quantum Information and Security (KEN4237)

Examiner: Dr. David Mestel

Desired prior knowledge: Quantum states, operators and measurements

Prerequisites: Introduction to Quantum Computing for AI and Data Science

Description: In this course we will consider the power of quantum mechanics not in accomplishing 
computational or ‘algorithmic’ tasks, but instead for communication- and security-related tasks.  
The strange properties of the quantum world turn out to be remarkably useful for these.  For 
example, we can exchange secret messages in a way that is unconditionally secure: secrecy is 
guaranteed by the physical laws of nature, rather than (as in ordinary cryptography) based on an 
assumption that a particular computational problem is too hard for the adversary.
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We will begin by covering the theoretical techniques needed to study security-related protocols, 
where it is fundamental that some parties will not know what state a particular quantum system 
is in.  After a thorough grounding in the ‘density matrix’ formalism which is used to represent this 
uncertainty, we will cover quantitative measures of this kind of uncertainty, for instance quantum 
versions of classical entropy.  We will then look at a variety of protocols (e.g. quantum money, 
quantum key distribution,…), and how to define and prove the desired properties.

Knowledge and understanding: Students will learn to use the `density matrix’ formalism to reason 
about quantum states under uncertainty, and about quantitative measures of uncertainty and 
entanglement.  They will also learn about the fundamentally `contextual’ nature of quantum 
mechanics, which is the foundation for all of the protocols we will study.

Applying knowledge and understanding: Students will be able to apply these theoretical techniques 
to analyse protocols and prove that they have desirable security properties.

Making judgements: Students will be able to judge whether protocols are suitable for particular 
goals.

Communication: Students will practice technical communication of research work in this area, 
describing and critically evaluating the work’s contributions.

Learning skills: Students will learn from lectures/textbook and then use this knowledge to read a 
research paper which they will present in class.

Study material: Lectures, textbook.

Assessment: 70% final exam, 30% in-class presentation summarising a research paper in the topic.

Recommended literature: T. Vidick and S. Wehner, `Introduction to quantum cryptography’, 
Cambridge University Press 2024

Additional literature: M. Wilde, `Quantum information theory’, Cambridge University Press 2013

ECTS: 6

Model Identification and Data Fitting (KEN4242)

Examiners: Prof. dr. ir. Ralf Peeters & dr. ir. Philippe Dreesen

Desired prior knowledge: Basic knowledge of Matlab and some familiarity with linear systems 
theory and transforms (such as Fourier and Laplace) is helpful. This course offers a useful prior 
knowledge for the course Symbolic Computation and Control. Linear Algebra, Mathematical 
Modelling, Probability and Statistics.

Prerequisites: None.

Course description: This course is devoted to the various practical and theoretical aspects which 
involve the estimation (the identification) of a mathematical model within a given model class, 
starting from a record of observed measurement data (input-output data). First, we address distance 
measures, norms, and criterion functions. Then we discuss the prediction error identification of 
linear regression models, with special emphasis on the various interpretations of such models 
(deterministic, stochastic with Gaussian white noise and maximum likelihood estimation, stochastic 
in a Bayesian estimation context) and on numerical implementation aspects (recursion, numerical 
complexity, numerical conditioning and square root filtering). Next, we study identification 
within the important class of auto-regressive dynamical models, to which the Levinson algorithm 
applies. Other related topics receiving attention are identifiability, model reduction, and model 
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approximation. Some techniques for the estimation of linear dynamical i/o-systems are illustrated 
with the system identification toolbox in Matlab.

Knowledge and understanding: Students learn to recognize the various aspects that play a key role 
in building a mathematical model from measurement data: the choice of model class (and order), 
the choice of parameterization, the criterion of fit, the model estimation method, the quality of the 
measurement data, and the validity of the estimated model.

Applying knowledge and understanding: Students are able to 1) estimate models from 
measurement data, particularly linear regression models and auto-regressive models, 2) to assess 
the quality of a (linear regression) model, and 3) assess whether a model is identifiable.

Making judgements: Students are able to predict and judge the quality of models that can be 
obtained from a record of measurement data.

Communication: Students learn to motivate the choice of a model class, the model order and an 
estimation method to identify a model from measurement data, to interpret the identification 
outcomes and to explain all this to specialists and non-specialists.

Learning skills: Students are able to read and interpret scientific literature on model estimation and 
system identification, and to use Matlab and work out ideas computationally.

Study material: Syllabus, provided electronically on the digital learning environment.

Recommended literature: 
•	 L. Ljung, System Identification: Theory for the User (2nd ed.), Prentice-Hall, 1999.
•	 T. Soderstrom and P. Stoica, System Identification, Prentice-Hall, 1989.

Exam: Written exam.

ECTS: 6

Period 2.4

Data Fusion (KEN4223)

Coordinator: Prof. Anna Wilbik

Examiners: Prof. Anna Wilbik & dr. Marcin Pietrasik

Tutor: Afsana Khan

Desired prior knowledge: Statistics and basic machine learning

Prerequisites: None.

Description: ICT development, e.g., remote sensing, IoT, lead to an enormous growth of available 
data for analysis. To integrate this heterogeneous or multimodal data, data fusion approaches are 
used. Data fusion can be understood as a framework for the joint analysis of data from multiple 
sources (modalities) that allows achieving information/knowledge not recoverable by the individual 
ones. 

During this course, several approaches to data fusion will be discussed, such as:
1.	 Low level data fusion, where data fusion methods are directly applied to raw data sets for ex-

ploratory or predictive purposes. A main advantage is the possibility to interpret the results 
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directly in terms of the original variables. An example of a low level data fusion is measuring the 
same signal or phenomena with different sensors, in order to discover the original one. Tradi-
tionally, PCA based methods are used for this type of data fusion. 

2.	 Mid level data fusion, where data fusion operates on features extracted from each data set. The 
obtained features are then fused in a “new” data set, which is modeled to produce the desired 
outcome. A main advantage is that the variance can be removed in the features extraction step, 
and thus the final models may show better performance. An example of a mid level data fusion 
is extracting numerical features from an image, and building a decision model based on those 
features. 

3.	 High level data fusion, also known as decision fusion, where decisions (models outcome) from 
processing of each data set are fused. It is used when the main objective is to improve the per-
formance of the final model and reach an automatic decision. Several methods can be used for 
high-level DF, such as weighted decision methods, Bayesian inference, Dempstere Shafer’s theory 
of evidence, and fuzzy set theory. There is a link between high-level data fusion and ensemble 
methods. 

4.	 Federated learning. Federated learning enables multiple parties jointly train a machine learning 
model without exchanging the local data. In case of federated learning, we can talk about model 
fusion.

Moreover, we will discuss the outcome economy model, to show the possibilities where data fusion 
could be beneficial in a business setting.

Knowledge and understanding: The student can explain fusion on the different levels: low level, mid 
level and high level as well as federated learning. They can identify which approach is appropriate 
for a problem in hand.

Applying knowledge and understanding: Students are able to describe the advantages and 
disadvantages of different methods. Students have obtained the knowledge to develop, program, 
analyse, and apply fusion methods to a wide variety of problems in the context of data-driven 
decision making.

Making judgements: Students will be able to judge the quality of models, results and approaches 
(e.g., scientific publications).

Communication: Students will be able to present the results the fusion models to specialists or non-
specialists.

Learning skills: Students will be able to familiarize themselves with fusion techniques beyond the 
scope of the course in order to solve a problem.

Study material: Course notes and research papers made available.

Assessment: Written exam (70%) + group assignment (30%)

Recommended literature: research articles on those topics

Additional literature: research articles on those topics

ECTS: 6
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Computational Statistics (KEN4258)

Coordinator & examiner: Dr. Christof Seiler

Desired prior knowledge: Probability and Statistics

Prerequisites: None.

Description: In this course, we will start with where data comes from—experiments or 
observational studies. We will then devote a substantial amount of time studying linear models and 
their extensions. We will articulate their assumptions and limitations. We will see that sometimes 
it’s not possible to estimate certain things from the data no matter what tools somebody tries to 
sell us. We will learn about the bootstrap, randomization tests, and Markov chain Monte Carlo—
computational methods to quantify uncertainty for any estimation algorithm. Towards the end of 
the course, we will get a taste of how to test hypotheses for datasets with many variables and few 
observations—something that we often encounter in modern scientific and business contexts.

Knowledge and understanding: Knowing a wide range of modern statistical models and 
computational tools to draw inferences will provide the foundations for analyzing complex data in 
academia and industry.

Applying knowledge and understanding: Students can build statistical models and choose 
computational tools to perform inference.

Making judgements: In this course, we will discuss one of the most important aspects of analyzing 
data: being skeptical of results and avoiding wishful thinking.

Communication: Students will present their results using literate programming and reproducible 
workflows.

Learning skills: Students can understand, apply, and extend papers from statistics journals and 
machine learning conferences.

Study material: Lecture slides, selected chapters from textbooks, and research papers

Assessment: 20% homework assignments 

Exam: 80% written final exam

Recommended literature: David A. Freedman, Statistical Models (2nd Edition, 2012)

ECTS: 6
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Period 2.5 

Symbolic Computation and Control (KEN4252)

Examiner: dr. ir. Philippe Dreesen

Desired prior knowledge: Linear Algebra, Calculus, Mathematical Modelling.

Course description: This course consists of two interrelated parts. In the first part, we focus on 
basic techniques for the digital control of linear dynamical systems using feedback. We start by 
addressing system stability and we discuss the technique of pole placement by state feedback to 
solve the regulation problem. Then we introduce state observers to solve the regulation problem 
by output feedback. Next, we extend our scope to tracking problems. This involves the design 
of additional dynamics to characterize the relevant class of reference signals, which are then 
integrated with the earlier set-up for output feedback. Finally, we discuss the classical topic of 
optimal control, which can be employed to avoid using prototype systems for pole placement, and 
which allows the user to design a feedback law by trading off the cost involved in generating large 
inputs against the achieved tracking accuracy. In the second part, we address computational issues, 
related to the field of systems and control. Classically, computers have been designed primarily 
to perform approximate numerical arithmetic. Modern software packages for mathematical 
computation, such as Maple and Mathematica, allow one to perform exact and symbolic 
computation too. We shall explore this new area. It is demonstrated how speed, efficiency and 
memory usage considerations often lead to surprising and fundamentally different algorithmic 
solutions in a symbolic or exact context. Applications and examples involve stability of linear 
systems, model approximation, and linear matrix equations with free parameters. Practical classes 
serve to demonstrate the techniques and to make the student familiar with exact and symbolic 
computation.

Knowledge and understanding: Students familiarize themselves with state and output feedback 
to achieve control of dynamical systems. Concretely, they learn to (mathematically) build a basic 
stabilizing feedback controller for a linear input-output dynamical system, using a combination of 
different design techniques. Students learn methods for exact numerical and symbolic computation, 
as used in algebraic computation with unspecified parameters. They also learn in which ways these 
are different from the more commonly used approximate numerical (floating-point) methods: in 
terms of accuracy, speed (complexity), and memory usage.

Applying knowledge and understanding: Students will be able to construct and implement, for a 
given linear dynamical input-output system: (a) stabilizing state feedback, (b) full state observer, 
and (c) additional dynamics to perform tracking of a specified output trajectory. They will also be 
able to assess the quality of a controller, regarding an optimal control LQ criterion, and in view of 
the desired settling time and the trajectory approximation. Students will be able to determine the 
stability of a given linear dynamical system in an exact and/or symbolic algebraic way. They will 
also be able to efficiently solve linear systems of (matrix) equations involving symbolic parameters, 
avoiding pitfalls, which arise from techniques from approximate numerical computation.

Making judgements: Students will be able to judge the quality of a feedback design for stabilization 
(regulation) or tracking. Students will be able to indicate which exact and symbolic computation 
methods will and will not be useful for a given parameterized problem, regarding speed and 
memory usage.

Communication: Students will be able to motivate the design of a feedback controller, 
the construction of a trajectory approximation, the design of a full state observer, and the 
implementation choices of the weights in LQ-design. They will be able to explain the concept of 
feedback in the area of control. Students can adequately discuss speed and efficiency properties of 
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an algorithm (approximate numerical, exact numerical, symbolic) to specialists and non-specialists.

Learning skills: Students will be able to read and interpret basic scientific literature on control 
theory and on numerical and symbolic computation. They can use Matlab and the Control Toolbox 
and work out ideas computationally. Students can use some of the exact and symbolic functionality 
of Mathematica and work out ideas computationally.

Study material: Syllabus, provided on the study portal. Handouts.

Recommended Literature: Richard J. Vaccaro, Digital Control - A State-Space Approach, McGraw-Hill 
International Editions, 1995. ISBN 0-07-066781-0.

Exam: Written exam by computer in two parts, each having a weight of 50% on the final grade: 
one midterm take-home exam with Matlab on part 1 (control), one final classroom exam with 
Mathematica on part 2 (symbolic computation). The resit exam is on both parts of the course in a 
classroom setting.

ECTS: 6

Algorithms for Big Data (KEN4254)

Examiner: Dr. Matus Mihalák

Desired prior knowledge: Discrete mathematics, algorithm design and analysis, elementary discrete 
probability

Prerequisites: None.

Description: The emergence of very large datasets poses new challenges for the algorithm designer. 
For example, the data may not fit into the main memory anymore, and caching from a hard-drive 
becomes a new bottleneck that needs to be addressed. Similarly, algorithms with larger than 
linear running time take simply too long on very large datasets. Moreover, simple sensory devices 
can observe large amount of data over time, but cannot store all the observed information due to 
insufficient storage, and an immediate decision of what to store and compute needs to be made. 
Classical algorithmic techniques do not address these challenges, and a new algorithmic toolkit 
needs to be developed. In this course, we will look at a number of algorithmic responses to these 
problems, such as: algorithms with (sub-)linear running times, algorithms where the data arrive as a 
stream, computational models where memory is organized hierarchically (with larger storage units, 
such as hard-drives, being slower to access than smaller, faster storage such as CPU cache memory). 
New programming paradigms and models such as MapReduce/Hadoop will be discussed. We will 
also look at a number of topics from classical algorithm design that have undiminished relevance in 
the era of big data such as approximation algorithms and multivariate algorithmic analysis.

Knowledge and understanding: Students will know, exemplified on selected topics, what can be 
provably achieved when designing and analysing algorithms for very large datasets, and will know 
some of the most successful state-of-the-art algorithmic techniques for dealing with algorithmic 
challenges posed by large data sets. 

Applying knowledge and understanding: Students will be able to adjust and apply the gained 
knowledge about algorithmic techniques to various algorithmic challenges of handling large 
datasets. 

Making judgements: Students will be able to categorize large-scale problems according to their 
computational feasibility, and select the appropriate algorithmic response.
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Communication: Students will be able to reason about computational problems and algorithms 
addressing the problems in a clear, exact, and unambiguous way.

Learning skills: Additionally to the guiding material provided by the lecture, the students will 
autonomously search, read, and study the details from various sources.

Study material: Will be provided throughout the lecture.

Recommended literature: None.

Assessment: Written exam (80%) at the end of the course and graded exercises (20%) throughout 
the course.

ECTS: 6

3.6 Master Data Science for Decision Making

Data Science for Decision Making is the science of making informed and close-to-optimum 
decisions. It has widespread applications in health-care, society, business and engineering. In today’s 
world, many companies and organizations collect all sorts of data in large amounts. They aim to 
extract useful information from it, to recognize patterns and anomalies, and based on that improve 
their decisions. Data Science for Decision Making provides the mathematical tools to analyze and 
model the underlying real-world processes and decision questions, and to process and analyze the 
(big) data that come with the processes. It also provides and uses the computational software that 
is the key to data science. 

The two-year master’s programme in Data Science for Decision Making teaches the use of applied 
mathematics to analyze and optimize processes, problems and operations. Examples of applications 
are: discovering patterns in data such as images and time series, predicting future values such as 
demand for products or traffic on the roads, scheduling customer service agents, optimizing supply 
chains, controlling dynamical systems, modelling biological processes, finding optimal strategies in 
negotiation, and extracting meaningful components from brain signals.

The master’s programme Data Science for Decision Making covers a wide range of research topics, 
focusing on the following ones in its core:
1.	 Data mining to extract useful patterns and knowledge from large data repositories;
2.	 Mathematical modelling and parameter estimation from data, system identification, model ap-

proximation and reduction of model complexity;
3.	 Underlying mathematics and algorithm design and analysis to efficiently deal with the challeng-

es that the ever-growing amount of data pose;
4.	 Statistical analysis, in the computational sense, of data. 

The members of the teaching staff are actively involved in one or more of the research topics. As a 
result, the educational contents of the courses relate directly to the research performed.
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3.7 �Curriculum of the first year of the Master Programme Data Science  
for Decision Making

 
Year 1 ECTS

Period 1 1 Data Mining (KEN4113)
1 elective course from the following courses:
Mathematical Optimization (KEN4211)
Stochastic Decision-Making (KEN4221)
Signal and Image Processing (KEN4222)

Research Project 1 (**)  

6

6
6
6

Period 2 Model Identification and Data Fitting (KEN4242)
1 elective course from the following courses:
Advanced Concepts in Machine Learning (KEN4154)
Advanced Natural Language Processing (KEN4259)
Network Science (KEN4275)

Research Project 1 (**)

6

6
6
6

Period 3 Research Project 1 (KEN4230) 	  6

Period 4 Computational Statistics (KEN4258)
1 elective course from the following courses:
Data Fusion (KEN4223)
Explainable AI (***) (KEN4246)
Dynamic Game Theory (KEN4251)
Planning and Scheduling (KEN4253)
Building and Mining Knowledge Graphs (KEN4256)

Research Project 2 (**)

6

6
6
6
6
6

Period 5 Algorithms for Big Data (KEN4254)
1 elective course from the following courses
Information Retrieval and Text Mining (KEN4153)
Introduction to Quantum Computing for AI and DS (KEN4155) (****)
Symbolic Computation and Control (KEN4252)
Computer Vision (KEN4255)
 	
Research Project 2 (**)

6

6
6
6
6

Period 6 Research Project 1-2 (KEN4231)	  6

(*)	� ECTS credits obtained in year 1 of the programme cannot be used for exemptions in year 2 of the programme. 
90 unique ECTS (course) credits (+ 30 ECTS for the Master’s thesis) need to be obtained throughout the Master’s 
programme.

(**)	� The Research Project 1 will start in period 1.1 and 1.2 with weekly meetings. The credits for the project will become 
available at the end of period 1.3. The Research Project 2 will start in period 1.4 and 1.5 with weekly meetings. The 
credits for the project will become available at the end of period 1.6.

(***)	� The course has a capacity of 60 students.
(****)	� This course is a prerequisite for the elective courses Quantum Algorithms, Quantum AI, and Quantum Information 

and Security. These four courses, together with a dedicated research project on quantum computing, forms the 
specialization in Quantum Computing for AI and Data Science.
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3.8 �Curriculum of the second year of the Master Programme Data Science  
for Decision Making

Period 1, 2 and 3 of year two of the master’s program consist of electives to be chosen by the 
student. This optional program can be assembled at your own choice from the options provided, 
but within academic significance, level and relevance to your master’s track. The choice of electives 
is subject to approval by the Board of Examiners. The electives consist of the following options to 
choose from: master courses to be followed at  the Department of Advanced Computing Sciences, 
at other UM Master programmes, at another research university, a research project, an internship, 
a semester abroad at a foreign university. Note that you must have obtained at least 40 ECTS of 
course year 1 in order to enter the second year of the programme. 

Electives at Maastricht University outside  the Department of Advanced Computing Sciences
It is possible to take electives at other relevant master’s programmes at Maastricht University 
for at most 13 ECTS in the second year of the programme. The following courses below will be 
automatically approved by the Board of Examiners of the master’s programmes AI and DSDM. You 
should apply through the Special Course Approval procedure via the My UM Portal. Note that they 

may have limited capacity. 

School of Business and Economics ECTS

Collective Decision Making  (EBC4005) 6.5

Supply Chain Operations Management (EBC4016) 6.5

Negotiation & Allocation (EBC4193) 6.5

Ethics, Privacy and Security in a Digital Society (EBC4026) 6.5

Big Data Econometrics  (EBC4218) 6.5

Digital Business and Economics (EBC4083) 6.5

Faculty of Psychology and Neuroscience
Besides complying that you have passed 40 ECTS, for taking these electives at FPN you should have 
passed “Advanced Concepts in Machine Learning” and “Autonomous Robotic Systems” at  the 
Department of Advanced Computing Sciences.

Faculty of Psychology and Neuroscience ECTS

Auditory and Higher Order Language Processing (PSY4051) 4

Perception and Attention (PSY4052) 4

Sensorimotor Processing (PSY4054) 4

 
Exam: Depends on content of the elective program.

ECTS: 30

Internships: 
Another option for the elective semester in the Master Programme is to conduct a Business or 
Research internship. The students can choose the company or research organisation themselves. 
Together with a supervisor from the Department of Advanced Computing Sciences and a 
representative of the host organisation, the student fills out an internship proposal (which can 
be found on Canvas) and this requires approval of the Board of Examiners prior to its start. For 
this reason, it is important to start this process early. The university uses a standard internship 
agreement that students must use.
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Year 2 ECTS

Semester 1 * •	 Internship (research or business)
•	 Study abroad
•	 Elective courses at other UM Master’s programmes (at most 13 ECTS)

 
 

30

AND/OR:

Fall: At most 2 electives from the following courses:

Period 1 Intelligent Search and Games (KEN4123)
Mathematical Optimization (KEN4211)
Stochastic Decision-Making (KEN4221)
Signal Image Processing (KEN4222)
Quantum Algorithms (KEN4235)

6
6
6
6
6

Period 2 At most 2 electives from the following courses:

Advanced Concepts in Machine Learning (KEN4154)
Quantum AI (KEN4236)
Quantum Information and Security (KEN4237)
Advanced Natural Language Processing (KEN4259)
Network Science (KEN4275)

6
6
6
6
6

Period 1-3 Research Project 2-1 6

Spring:

Period 4 At most 2 electives from the following courses:

Agents and Multi-Agent Systems (KEN4111)
Data Fusion (KEN4223)
Explainable AI (*) (KEN4246)
Dynamic Game Theory (KEN4251)
Planning and Scheduling (KEN4253)
Building and Mining Knowledge Graphs (KEN4256)

6
6
6
6
6
6

Period 5 At most 2 electives from the following courses:

Autonomous Robotic Systems (KEN4114)
Information Retrieval and Text Mining (KEN4153)
Introduction Quantum Computing for AI and Data Science (**) (KEN4155)
Reinforcement Learning (KEN4157)
Symbolic Computation and Control (KEN4252)
Computer Vision (KEN4255)

6
6
6
6
6
6

Period 4-6 Research Project 2-2 6

Semester 2 Master’s thesis DSDM  (KEN4260) 30

 (*) Note: �during the elective semester (first semester of year 2) of the master’s programme it is possible to take electives 
from our other master’s programme or relevant master’s programmes at Maastricht University (maximum of 13 
ECTS outside the Department of Advanced Computing Sciences) or to participate in a research project, a business 
internship or a study abroad semester at one of our partner universities. Please contact exchange officer and/or 
the Student Counsellor for more information. 

(**) 	 The course has a capacity of 60 students
(***) 	� This course is a prerequisite for the elective courses Quantum Algorithms, Quantum AI and Quantum Information 

and Security. These four courses, together with a dedicated research project on quantum computing, form the 
specialization in Quantum Computing for AI and Data Sciences.
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3.9 Core courses Master Programme Data Science for Decision Making

Period 1.1

Data Mining (KEN4113)

Examiner:  Dr. E.N. Smirnov

Desired prior knowledge: Statistics and Basic Machine Learning

Prerequisites: None.

Description: Data mining is a major frontier field of machine learning. It allows extracting useful 
and interesting patterns and knowledge from large data repositories such as databases and the 
Web. Data mining  integrates techniques from the fields of databases, machine learning, statistics, 
and artificial intelligence. This course will present basic and state-of-the-art techniques of data 
mining. The lectures and labs will emphasize the practical use of the presented techniques and the 
problems of developing real data-mining applications. A step-by-step introduction to data-mining 
and python-based environments will enable the students to achieve specific skills, autonomy, and 
hands-on experience. A number of real data sets will be analyzed and discussed.

Formal models that will be investigated: Parametric and non-parametric models for supervised and 
unsupervised learning. 

Knowledge and understanding: Students will acquire knowledge on data preparation, data 
preprocessing, feature selection/generation, data mining, and model validation.

Applying knowledge and understanding: When confronted with real-life problems, students will 
be able to identify data-analysis tasks. Then, they will be able to apply data-mining techniques for 
supervised and unsupervised data-analysis. If necessary, students will be able to design data-mining 
algorithms specific for the tasks they have.

Making judgements: Students will be able to assess the quality of data-mining models, processes, 
results, and tools.

Communication: Students will be able to present the results of different stages of data-mining 
processes to specialists or non-specialists.

Learning skills: Students will be able to recognize their own lack of knowledge and understanding 
and take appropriate action such as consulting additional material or other sources of help.

Study material: Course notes, slides, and other information made available.

Assessment: Written exam + practical assignments.

Recommended Literature: Han, J., Pei, J., and Tong, H. (2022). Data Mining Concepts and Techniques, 
4th Edition, ISBN-10: 9780128117606, ISBN-13: 978-0128117606

Additional literature: Pang-Ning, T.,  Steinbach, M., Karpatne, A., and Kumar, V. (2018). Introduction 
to Data Mining, 2nd Edition, Pearson,  ISBN-10: 0133128903, ISBN-13: 978-0133128901

ECTS: 6
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Period 1.2

Model Identification and Data Fitting (KEN4242)

Examiners: Prof. dr. ir. Ralf Peeters & dr. ir. Philippe Dreesen

Desired prior knowledge: Basic knowledge of Matlab and some familiarity with linear systems 
theory and transforms (such as Fourier and Laplace) is helpful. This course offers a useful prior 
knowledge for the course Symbolic Computation and Control. Linear Algebra, Mathematical 
Modelling, Probability and Statistics.

Prerequisites: None.

Course description: This course is devoted to the various practical and theoretical aspects which 
involve the estimation (the identification) of a mathematical model within a given model class, 
starting from a record of observed measurement data (input-output data). First, we address distance 
measures, norms, and criterion functions. Then we discuss the prediction error identification of 
linear regression models, with special emphasis on the various interpretations of such models 
(deterministic, stochastic with Gaussian white noise and maximum likelihood estimation, stochastic 
in a Bayesian estimation context) and on numerical implementation aspects (recursion, numerical 
complexity, numerical conditioning and square root filtering). Next, we study identification 
within the important class of auto-regressive dynamical models, to which the Levinson algorithm 
applies. Other related topics receiving attention are identifiability, model reduction, and model 
approximation. Some techniques for the estimation of linear dynamical i/o-systems are illustrated 
with the system identification toolbox in Matlab.

Knowledge and understanding: Students learn to recognize the various aspects that play a key role 
in building a mathematical model from measurement data: the choice of model class (and order), 
the choice of parameterization, the criterion of fit, the model estimation method, the quality of the 
measurement data, and the validity of the estimated model.

Applying knowledge and understanding: Students are able to 1) estimate models from 
measurement data, particularly linear regression models and auto-regressive models, 2) to assess 
the quality of a (linear regression) model, and 3) assess whether a model is identifiable.

Making judgements: Students are able to predict and judge the quality of models that can be 
obtained from a record of measurement data.

Communication: Students learn to motivate the choice of a model class, the model order and an 
estimation method to identify a model from measurement data, to interpret the identification 
outcomes and to explain all this to specialists and non-specialists.

Learning skills: Students are able to read and interpret scientific literature on model estimation and 
system identification, and to use Matlab and work out ideas computationally.

Study material: Syllabus, provided electronically on the digital learning environment.

Recommended literature: 
•	 L. Ljung, System Identification: Theory for the User (2nd ed.), Prentice-Hall, 1999.
•	 T. Soderstrom and P. Stoica, System Identification, Prentice-Hall, 1989.

Exam: Written exam.

ECTS: 6
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Project 1-1 (KEN4230)

Coordinator: Dr. Linda Rieswijk

Examiner(s): To be announced

Tutors: Dr. Gijs Schoenmakers, Dr. Menica Dibenedetto & Dr. Linda Rieswijk

Desired prior knowledge: None.

Prerequisites: None.

Description: The research project takes place during the three periods of the semester. Project 
topics are presented at the start of the semester and assigned to students based on their 
preferences and availability. The emphasis in the first phase is on initial study of the context set 
out for the project and the development of a project plan. In the second period, the goal is to start 
modelling, prototyping and developing. In period 3, the implementation, model and/or experiments 
set out in the project plan has to be finished and reported on. The project results in a project 
presentation, a project report and possibly a public website and/or product.

Knowledge and understanding: Students get to know and possibly contribute to state of the art 
methods within the fields of Artificial Intelligence and/or Data Science for Decision Making to 
answer an open question.

Applying knowledge and understanding: Student write their own research plan in coordination 
with a staff member (plus possibly outsiders) who act as clients with an open question. Students 
with different backgrounds and from both masters work together in teams to build and evaluate 
an answer to an open question. Students find, judge the suitability, apply, and evaluate state of the 
art techniques to answer questions and construct applications in the field of Artificial Intelligence 
and Data Science. Students apply the accumulated knowledge from other educational activities in 
application specific areas

Making judgements: Students judge feasibility of tasks, attainability of goals, and the amount of 
work involved. Students think about the possible consequences of their work. Students evaluate 
state of the art and the applicability and scope of research results.

Communication: Students will learn to:
(1)	 orally communicate and cooperate with peers 
(2)	 orally report on progress and intermediate results to superiors 
(3)	 orally negotiate and communicate with clients 
(4)	 communicate their ideas in written form, both for an academic and a general audience
(5)	 give effective presentations

Learning skills: Students increase their own level of knowledge in a specialized sub-discipline of the 
field of Artificial Intelligence and/or Data Science. Students perform research into recent state of the 
art techniques. Students learn that the field of Artificial Intelligence and Data Science are constantly 
evolving beyond what is taught in class

Study material: Slides provided at the end of joint information sessions.  Literature provided by the 
project supervisors.

Assessment: Phase 1: project plan (15%); Phase 2: social media post+ presentation (15%); Phase 3: 
Project report + presentation (70%) 

Skill classes: A number of skill classes will be offered

ECTS: 6
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Period 1.4

Computational Statistics (KEN4258)

Coordinator & examiner: Dr. Christof Seiler

Desired prior knowledge: Probability and Statistics

Prerequisites: None.

Description: In this course, we will start with where data comes from—experiments or 
observational studies. We will then devote a substantial amount of time studying linear models and 
their extensions. We will articulate their assumptions and limitations. We will see that sometimes 
it’s not possible to estimate certain things from the data no matter what tools somebody tries to 
sell us. We will learn about the bootstrap, randomization tests, and Markov chain Monte Carlo—
computational methods to quantify uncertainty for any estimation algorithm. Towards the end of 
the course, we will get a taste of how to test hypotheses for datasets with many variables and few 
observations—something that we often encounter in modern scientific and business contexts.

Knowledge and understanding: Knowing a wide range of modern statistical models and 
computational tools to draw inferences will provide the foundations for analyzing complex data in 
academia and industry.

Applying knowledge and understanding: Students can build statistical models and choose 
computational tools to perform inference.

Making judgements: In this course, we will discuss one of the most important aspects of analyzing 
data: being skeptical of results and avoiding wishful thinking.

Communication: Students will present their results using literate programming and reproducible 
workflows.

Learning skills: Students can understand, apply, and extend papers from statistics journals and 
machine learning conferences.

Study material: Lecture slides, selected chapters from textbooks, and research papers

Assessment: 20% homework assignments 

Exam: 80% written final exam

Recommended literature: David A. Freedman, Statistical Models (2nd Edition, 2012)

ECTS: 6
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Period 1.5

Algorithms for Big Data (KEN4254)

Examiner: Dr. Matus Mihalák

Desired prior knowledge: Discrete mathematics, algorithm design and analysis, elementary discrete 
probability

Prerequisites: None.

Description: The emergence of very large datasets poses new challenges for the algorithm designer. 
For example, the data may not fit into the main memory anymore, and caching from a hard-drive 
becomes a new bottleneck that needs to be addressed. Similarly, algorithms with larger than 
linear running time take simply too long on very large datasets. Moreover, simple sensory devices 
can observe large amount of data over time, but cannot store all the observed information due to 
insufficient storage, and an immediate decision of what to store and compute needs to be made. 
Classical algorithmic techniques do not address these challenges, and a new algorithmic toolkit 
needs to be developed. In this course, we will look at a number of algorithmic responses to these 
problems, such as: algorithms with (sub-)linear running times, algorithms where the data arrive as a 
stream, computational models where memory is organized hierarchically (with larger storage units, 
such as hard-drives, being slower to access than smaller, faster storage such as CPU cache memory). 
New programming paradigms and models such as MapReduce/Hadoop will be discussed. We will 
also look at a number of topics from classical algorithm design that have undiminished relevance in 
the era of big data such as approximation algorithms and multivariate algorithmic analysis.

Knowledge and understanding: Students will know, exemplified on selected topics, what can be 
provably achieved when designing and analysing algorithms for very large datasets, and will know 
some of the most successful state-of-the-art algorithmic techniques for dealing with algorithmic 
challenges posed by large data sets. 

Applying knowledge and understanding: Students will be able to adjust and apply the gained 
knowledge about algorithmic techniques to various algorithmic challenges of handling large 
datasets. 

Making judgements: Students will be able to categorize large-scale problems according to their 
computational feasibility, and select the appropriate algorithmic response.

Communication: Students will be able to reason about computational problems and algorithms 
addressing the problems in a clear, exact, and unambiguous way.

Learning skills: Additionally to the guiding material provided by the lecture, the students will 
autonomously search, read, and study the details from various sources.

Study material: Will be provided throughout the lecture.

Recommended literature: None.

Exam: Written exam (75%) at the end of the course and graded exercises (25%) throughout the 
course.

ECTS: 6
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Project 1-2 (KEN4231)

Coordinator: Dr. Linda Rieswijk

Examiner(s): T.B.A.

Tutors: Dr. Gijs Schoenmakers, Dr. Menica Dibenedetto & Dr. Linda Rieswijk

Desired prior knowledge: None.

Prerequisites: None.

Description: The research project takes place during the three periods of the semester. Project 
topics are presented at the start of the semester and assigned to students based on their 
preferences and availability. The emphasis in the first phase is on initial study of the context set 
out for the project and the development of a project plan. In the second period, the goal is to start 
modelling, prototyping and developing. In period 3, the implementation, model and/or experiments 
set out in the project plan has to be finished and reported on. The project results in a project 
presentation, a project report and possibly a public website and/or product.

Knowledge and understanding: Students get to know and possibly contribute to state of the art 
methods within the fields of Artificial Intelligence and/or Data Science for Decision Making to 
answer an open question.

Applying knowledge and understanding: Student write their own research plan in coordination 
with a staff member (plus possibly outsiders) who act as clients with an open question. Students 
with different backgrounds and from both masters work together in teams to build and evaluate 
an answer to an open question. Students find, judge the suitability, apply, and evaluate state of the 
art techniques to answer questions and construct applications in the field of Artificial Intelligence 
and Data Science. Students apply the accumulated knowledge from other educational activities in 
application specific areas

Making judgements: Students judge feasibility of tasks, attainability of goals, and the amount of 
work involved. Students think about the possible consequences of their work. Students evaluate 
state of the art and the applicability and scope of research results.

Communication: Students will learn to:
1.	 orally communicate and cooperate with peers 
2.	 orally report on progress and intermediate results to superiors 
3.	 orally negotiate and communicate with clients 
4.	 communicate their ideas in written form, both for an academic and a general audience
5.	 give effective presentations

Learning skills: Students increase their own level of knowledge in a specialized sub-discipline of the 
field of Artificial Intelligence and/or Data Science. Students perform research into recent state of the 
art techniques. Students learn that the field of Artificial Intelligence and Data Science are constantly 
evolving beyond what is taught in class

Study material: Slides provided at the end of joint information sessions.  Literature provided by the 
project supervisors.

Assessment: Phase 1: project plan (15%); Phase 2: social media post+ presentation (15%); Phase 3: 
Project report + presentation (70%) 

Skill classes: A number of skill classes will be offered

ECTS: 6
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3.10 Elective courses Master Programme Data Science for Decision Making

Period 1.1 & 2.1

Mathematical Optimization (KEN4211)

Coordinator & examiner: Dr. Pieter Collins

Desired prior knowledge: Calculus, Linear Algebra, Linear Programming

Prerequisites: None.

Description: Optimization is the subject of finding the best or optimal solution to a problem from 
a set of potential or feasible solutions. Optimization problems are fundamental in all forms of 
decision-making, since one wishes to make the best decision in any context, and in the analysis 
of data, where one wishes to find the best model describing experimental data. This course treats 
two different areas of optimization: nonlinear optimization and combinatorial optimization, 
building on knowledge of linear programming using the simplex algorithm. Together, nonlinear 
and combinatorial optimization cover a wide range of real life optimization problems. Nonlinear 
optimization deals with the situation that there is a continuum of available solutions. A best 
solution is then usually approximated with one of several available general purpose algorithms, 
such as Brent’s method for one-dimensional problems, (quasi-)Newton and conjugate gradient 
methods for unconstrained problems, and Lagrangian methods, including active-set methods, 
sequential quadratic programming and interior-point methods for general constrained problems. 
Combinatorial optimization deals with situations that a best solution from a discrete set of available 
choices must be found. A variety of techniques, such as linear programming, branch and cut, 
Lagrange relaxation and approximation algorithms are employed to tackle this type of problem. 
Throughout the course, we aim to provide a coherent framework for the subject, with a focus on 
optimality conditions (notably the Karush-Kuhn-Tucker conditions), Lagrange multipliers and duality, 
relaxation and approximate problems, and on convergence rates and computational complexity.  
The methods will be illustrated by in-class computer demonstrations, exercises illustrating the main 
concepts and algorithms, modelling and computational work on case studies of practical interest, 
and a discussion of advanced stochastic and batch optimization methods for machine-learning.

Formal models that will be investigated: Unconstrained and constrained nonlinear programming 
problems; integer-linear programming problems.

Knowledge and understanding: By the end of this course, students will have a strong foundation 
in nonlinear and combinatorial optimization. You will be able to formulate real-life problems as 
optimization problems. You will understand optimality conditions, including the Karush-Kuhn-
Tucker conditions and be able to test for optimality. You will know how to solve a variety of general 
optimization problems, including constrained nonlinear problems, and (mixed-)integer linear 
problems. You will understand notions of duality and Lagrange multipliers, and be able to apply 
techniques based on relaxation and approximation. 

Applying knowledge and understanding: Students will know the advantages and disadvantages of 
different methods, and be able to choose an appropriate method for a given problem. You will be 
able to implement and test optimization algorithms on a computer. You will be able to apply your 
knowledge to the solution of practical problems and in developing new efficient algorithms.

Making judgements: Students will be able to select an appropriate solution method for a given 
optimization problem, and judge the quality of the solution obtained.
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Communication: Students will be able to discuss the development and use of optimization 
algorithms.

Learning skills: Students will learn how to develop and implement mathematical methods for 
optimization, select and evaluate algorithms, and formulate mathematical model of real-world 
problems.

Study material: Lecture notes, handouts.

Exam: Written examination, closed book (100%).

Recommended literature: J. Nocedal and S.J. Wright, “Numerical Optimization”, Springer, 2006; ISBN: 
978-0-387-30303-1. C.H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization: Algorithms 
and Complexity”, Dover Publications, 1998; ISBN: 978-0-13152-462-0. W.J. Cook, W.H. Cunningham, 
W.R. Pulleyblank and A. Schrijver, “Combinatorial Optimization”, Wiley-Interscience, 1998; ISBN: 978-
0-47155-894-1.

ECTS: 6

Stochastic Decision-Making (KEN4221)

Coordinator: Dr. Gijs Schoenmakers

Examiners: Dr. Gijs Schoenmakers & Dr. Dennis Soemers

Desired prior knowledge: Probability & Statistics

Description: Any realistic model of a real-world phenomenon must take into account the possibility 
of randomness. That is, more often than not, the quantities we are interested in will not be predict-
able in advance but, rather, will exhibit an inherent variation that should be taken into account by 
the model. Mathematically, this is usually accomplished by allowing the model to be probabilistic in 
nature. In this course, the following topics will be discussed:
1.	 Basic concepts of probability theory: Probabilities, conditional probabilities, random variables, 

probability distribution functions, density functions, expectations and variances.
2.	 Finding probabilities, expectations and variances of random variables in complex probabilistic 

experiments.
3.	 Discrete and continuous time Markov chains and related stochastic processes like random walks, 

branching processes, Poisson processes, birth and death processes, queueing theory.
4.	 Markov decision problems.
5.	 Multi-armed bandit problems, bandit algorithms, contextual bandits, cumulative regret, and 

simple regret

Knowledge and understanding: In this course, the students acquire tools for modelling complex 
processes involving randomness, providing a basis for originality in developing and/or applying 
ideas in a research context.

Applying knowledge and understanding: When confronted with complex problems that involve 
probabilistic experiments, students have the tools to create and analyse appropriate models.

Making judgements: The students are able to analyse complex problems as stochastic processes 
and solve them. Furthermore, students can find optimal solutions in decision problems that are 
based on these stochastic processes.

Communication: The students will be able to communicate their conclusions and the underlying 
rationale to expert and non-expert audiences.
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Learning skills: The students have obtained the skills to study related material in a largely 
autonomous manner.

Study material: Introduction to Probability Models by Sheldon M. Ross (9 th or 10th ed.) + Lecture 
notes that are provided via Student Portal.

Exam: Written exam.

Recommended literature: Probability: A Lively Introduction by Henk Tijms; Reinforcement Learning 
by Richard S. Sutton and Andrew G. Barto (2nd ed.) (chapter 2); Bandit Algorithms by Tor Lattimore 
and Csaba Szepesvári

ECTS: 6

Signal and Image Processing (KEN4222)

Examiner: Dr. Joel Karel & dr. Pietro Bonizzi

Desired Prior Knowledge: Linear algebra, Calculus, basic knowledge of Matlab. Some familiarity with 
linear systems theory and transforms (such as Fourier and Laplace) is helpful.

Prerequisites: None.

Description: This course offers the student a hands-on introduction into the area of digital signal 
and image processing. We start with the fundamental concepts and mathematical foundation. This 
includes a brief review of Fourier analysis, z-transforms and digital filters. Classical filtering from a 
linear systems perspective is discussed. Next wavelet transforms and principal component analysis 
are introduced. Wavelets are used to deal with morphological structures in signals. Principal 
component analysis is used to extract information from high-dimensional datasets. We then discuss 
Hilbert-Huang Transform to perform detailed time-frequency analysis of signals. Attention is given 
to a variety of objectives, such as detection, noise removal, compression, prediction, reconstruction 
and feature extraction. We discuss a few cases from biomedical engineering, for instance involving 
ECG and EEG signals. The techniques are explained for both 1D and 2D (images) signal processing. 
The subject matter is clarified through exercises and examples involving various applications. In the 
practical classes, students will apply the techniques discussed in the lectures using the software 
package Matlab.

Knowledge and understanding: Students are able to explain fundamental concepts of signal and 
image processing and their mathematical foundation. They are able to 1) describe various types of 
filters and their properties, 2) explain orthogonal wavelet filter banks and describe their properties, 
3) explain a construction scheme and elicit a wavelet-based noise-filtering scheme, 4) explain 
principal component analysis and empirical signal processing techniques and how they complement 
the other techniques discussed.

Applying knowledge and understanding: Students are able to use the various techniques discussed 
during the lectures to solve real-world problems, such as being able to apply wavelet filtering and 
principal component analysis on various signals. They are also able to analyse a signal by using 
Matlab, and independently interpret the outcome of an analysis.

Making judgements: Students are able to assess what technique is suited for a signal processing 
problem at hand, and to independently and critically look at a signal or image, and understand if 
and what type of pre-processing is required.

147 - Student Handbook



Communication: Students are able to communicate signal and image processing techniques and 
strategies, and the results of their analyses to experts and non-experts.

Learning skills: Students are able to independently master signal and image processing techniques, 
from classical signal processing techniques to more empirical techniques, and they are able to stay 
up to date with the state of the art in the field.

Study material: Discrete Wavelet Transformations: An Elementary Approach with Applications, Pat-
rick J. Van Fleet, Wiley, ISBN: 978-0-470-18311-3.
Additional material provided electronically on Student Portal.

Recommended literature: Principal Component Analysis, Ian T. Jolliffe, Springer, ISBN13: 978-
0387954424.

Exam: Written exam/Computer exam.

ECTS: 6

Period 1.2 & 2.2

Advanced Concepts in Machine Learning (KEN4154)

Coordinator & examiner: Dr. Enrique Hortal

Desired prior knowledge: Machine Learning

Prerequisites: None.

Description: This course will introduce a number of advanced concepts in the field of machine 
learning such as Support Vector Machines, Gaussian Processes, Deep Neural Networks, 
Neuromorphic Learning, etc. All of these are approached from the view that the right data 
representation is imperative for machine learning solutions. Additionally, different knowledge 
representation formats used in machine learning are introduced. This course counts on the fact 
that the basics of machine learning were introduced in other courses so that it can focus on more 
recent developments and state-of-the-art machine learning research. Labs and assignments will 
give the students the opportunity to implement or work with some of these techniques and will 
require them to read and understand published scientific papers from recent Machine Learning 
conferences.

Knowledge and understanding: Students can explain, construct and adapt powerful machine 
learning techniques, most with a statistical background. Students recognise the need for non-
standard techniques and representations that can be used for complex/structured data. They can 
explain the strengths and weaknesses of different machine learning approaches.

Applying knowledge and understanding: Students will be able to select, adapt and apply a number 
of advanced machine learning approaches. They will be able to select the correct representation 
for a machine learning problem and translate a machine learning problem into a suited 
representational format.

Making judgements: Students will be able to judge which machine learning approach and data 
representation is best suited. They will also be able to comprehend and judge machine learning 
research.
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Communication: Students will be able to relate different machine learning techniques to each other 
and explain their working, benefits, and disadvantages to non-experts. They will also be able to 
discuss the need and use of structured representation with both experts and non-experts.

Learning skills: Students will be able to relate information from different sources, and read, process 
and evaluate recent research developments in the field of machine learning.

Study material: Slides that support the lectures and collected notes and chapters from freely 
available books and course notes.

Assessment: Closed-book written exam (80%) + Assignments (20%)

Recommended literature: 
•	 Pattern Recognition and Machine Learning - C.M. Bishop
•	 Bayesian Reasoning and Machine Learning - D. Barber
•	 Gaussian Processes for Machine Learning - C.E. Rasmussen & C. Williams
•	 The Elements of Statistical Learning - T. Hastie et al.

ECTS: 6

Advanced Natural Language Processing (KEN4259)

Examiners: Prof dr. ir. J.C. Scholtes & Dr. Aki Härmä

Desired prior knowledge: None.

Prerequisites: None.

Description: How do I say, “Where is the next Italian restaurant” in Dutch? Can I actually use 
speech recognition instead of typing my question? Can I get a summary of today’s lecture? Can 
your chatbot assist me in finding the right information, answer my question or solve my problem? 
How do I know for sure that they chatbot does not hallucinate? How can I integrate multi-modal 
information in my language task? 

Computers able to answer these questions are a long-time dream of humankind. For many years, 
computers underperformed using linguistic skills compared to humans. However, the development 
of Large Language Models (LLM) allowed us to make huge progress and perform at the human level 
for tasks such as machine translation, Q&A, abstracting, speech recognition, summarization and 
having a conversation with a computer program. 

This course will provide the skills and knowledge to develop state-of-the-art (SOTA) solutions for 
these natural language processing (NLP) tasks.

After a short introduction to traditional grammatical and statistical approaches to NLP, the course 
will focus on deep learning techniques to solve these problems. In the first part of the course, we 
will investigate methods to model basic sequence labeling tasks like Part-of-Speech techniques. The 
second part of the lecture will focus on deep-learning models to solve many NLP tasks like machine 
translation, summarization and question answering.

In this course, major challenges when building the systems will be address: representing words 
in neural networks, neural network architectures to model language, methods to train complex 
models and algorithms to find the most probable output. Most of the lectures will focus on 
transformer-based models, both encoder, decoder and encoder-decoder models as well as multi-
modal approaches. In addition, we discuss important aspects of Large Language Models (LLM) such 
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as quantitative measuring of quality, fine-tuning LLM’s, limitations to prompt engineering, ethics, 
energy consumption and eXplainable AI (XAI). 

The theory discussed in the course is supported by various (Python) tutorials where the students can 
experience the inner-workings of the algorithms themselves.  

Linear Algebra, Statistics, Deep Learning and Natural Language Processing play an important role in 
this course.

This course is complementary to the course Information Retrieval and Text-Mining. Overlap is 
reduced to the necessary minimum. Both courses can be followed in any particular order. In 
the Information Retrieval and Text Mining course we focus more on creating an optimal search 
experience, in the Advanced Natural Language Processing course, we do a deep dive into the 
algorithms and models used for different language-related problems such as machine translation, 
abstracting, and dialogs with chatbots. Tutorials are shared between the two courses. 

Knowledge and understanding:  Student will be taught traditional approaches in NLP, as well as 
statistical models. Finally, state-of-the-art (SOTA) deep learning techniques for natural language 
processing (including multi-modal information), including understanding methods to evaluate 
the performance of such models. They will learn techniques to address the major challenges when 
building a natural language processing tool, including explainability and more efficient energy 
usage of such models. 

Appling knowledge and understanding: The achievements in deep learning have significantly 
improved the quality of state-of-the-art methods for natural language processing. With the 
knowledge acquired in the course, students will be able to build SOTA solutions. Students will also 
understand why deep learning models are outperforming traditional grammatical and statistical 
models and what the limitations and risks are of deep learning models in terms of applying 
explainable AI and more energy-efficient models. 

Making Judgements: Students will be able to analyze the specific challenges of a task in NLP. Based 
on the gather knowledge on different ways to model tasks they are able to select and implement a 
fitting model to solve the task. 

Communication: Through reporting on tutorials, students will be enabled to communicate their 
findings and explain the rationale behind their choices in deep learning techniques for natural 
language processing.

Learning Skills: After successful completion of the course, students will be able to develop natural 
language processing tools and perform research on new ideas in the field.

Study material: Mostly based on the lecture notes and the provided material including recent papers 
published in this field. We will also provide references to a number of good books that are on-line 
available for more background information. 

Recommended literature: Papers published in top international conferences and journals in machine 
learning field. 

Assessment: Participation in the tutorials (30%), final exam (70%). The exam is open book.

ECTS: 6
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Network Science (KEN4275)

Coordinator: Adriana Iamnitchi

Desired prior knowledge: Introductory knowledge of programming for data analysis, particularly in 
Python; algorithms; algorithmic complexity. Introductory courses in algorithms, data structures, and 
data analytics.

Prerequisites: None.

Description: Many aspects of everyday life and science can be represented as networks: social 
networks represent relationship (links) between people (nodes); brain activity can be represented 
via synapses (links) between neurons (nodes); the street map is formed of roads (links) that connect 
at intersections (nodes); authors of scientific papers connect to each others in a citation network, 
with directed links from the paper cited to the paper citing it; communication networks connect 
routers via physical or logical links; etc. Network analysis plays a significant role in the “big data” 
analytics because of size, data velocity, or computational complexity. 

This course focuses on the study of network structures and dynamic processes on networks using 
real data from various disciplines, including socio-technological platforms, biology, social science, 
and economics. Topics cover the analysis and modeling of complex networks, network dynamics, 
community detection, network resilience and contagion, as well as processing of network structures 
for machine learning tasks.

Formal models that will be investigated: random graphs, scale-free networks, preferential 
attachment model, Watts and Strogatz model, epidemics models.

Knowledge and understanding: Students will acquire a solid understanding of the key concepts and 
terminology in network science, will comprehend the theoretical underpinnings of various network 
models, and recognize relevant network characteristics across different contexts and applications.

Applying knowledge and understanding: Students will employ computational tools to model, 
analyze, and visualize networks from various real-world sources, and implement simulations to 
study network dynamics and evolution. 

Making judgements: Students will critically assess different network models and their applicability 
to real-world problems. They will evaluate the implications of network structure on system 
dynamics. They will evaluate the benefits and limitations of various network embedding techniques 
for machine learning tasks. 

Communication: Students will be able to present complex network concepts clearly to both 
specialist and non-specialist audiences and collaborate effectively in teams on network analysis 
projects.

Learning skills: In addition to the guiding material formally provided in the course, students will 
research independently from various sources. 

Study material: Will be provided throughout the lecture.

Assessment: Assignments and group project. 

Recommended literature: “Networks, Crowds, and Markets: Reasoning About a Highly Connected 
World” by David Easley and Jon Kleinberg.

Additional literature: Graph Theory and Complex Networks: An Introduction by Maarten van Steen 

ECTS: 6
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Period 1.4 & 2.4

Data Fusion (KEN4223)

Coordinator: Prof. Anna Wilbik

Examiners: Prof. Anna Wilbik & dr. Marcin Pietrasik

Tutor: Afsana Khan

Desired prior knowledge: Statistics and basic machine learning

Prerequisites: None.

Description: ICT development, e.g., remote sensing, IoT, lead to an enormous growth of available 
data for analysis. To integrate this heterogeneous or multimodal data, data fusion approaches are 
used. Data fusion can be understood as a framework for the joint analysis of data from multiple 
sources (modalities) that allows achieving information/knowledge not recoverable by the individual 
ones. 

During this course, several approaches to data fusion will be discussed, such as:
1.	 Low level data fusion, where data fusion methods are directly applied to raw data sets for ex-

ploratory or predictive purposes. A main advantage is the possibility to interpret the results 
directly in terms of the original variables. An example of a low level data fusion is measuring the 
same signal or phenomena with different sensors, in order to discover the original one. Tradi-
tionally, PCA based methods are used for this type of data fusion. 

2.	 Mid level data fusion, where data fusion operates on features extracted from each data set. The 
obtained features are then fused in a “new” data set, which is modeled to produce the desired 
outcome. A main advantage is that the variance can be removed in the features extraction step, 
and thus the final models may show better performance. An example of a mid level data fusion 
is extracting numerical features from an image, and building a decision model based on those 
features. 

3.	 High level data fusion, also known as decision fusion, where decisions (models outcome) from 
processing of each data set are fused. It is used when the main objective is to improve the per-
formance of the final model and reach an automatic decision. Several methods can be used for 
high-level DF, such as weighted decision methods, Bayesian inference, Dempstere Shafer’s theory 
of evidence, and fuzzy set theory. There is a link between high-level data fusion and ensemble 
methods. 

4.	 Federated learning. Federated learning enables multiple parties jointly train a machine learning 
model without exchanging the local data. In case of federated learning, we can talk about model 
fusion.

Moreover, we will discuss the outcome economy model, to show the possibilities where data fusion 
could be beneficial in a business setting.

Knowledge and understanding: The student can explain fusion on the different levels: low level, mid 
level and high level as well as federated learning. They can identify which approach is appropriate 
for a problem in hand.

Applying knowledge and understanding: Students are able to describe the advantages and 
disadvantages of different methods. Students have obtained the knowledge to develop, program, 
analyse, and apply fusion methods to a wide variety of problems in the context of data-driven 
decision making.

Making judgements: Students will be able to judge the quality of models, results and approaches 
(e.g., scientific publications).

152 - Student Handbook



Communication: Students will be able to present the results the fusion models to specialists or non-
specialists.

Learning skills: Students will be able to familiarize themselves with fusion techniques beyond the 
scope of the course in order to solve a problem.

Study material: Course notes and research papers made available.

Assessment: Written exam (70%) + group assignment (30%)

Recommended literature: research articles on those topics

Additional literature: research articles on those topics

ECTS: 6

Explainable AI (KEN4246)

Coordinators: Prof. Dr. Nava Tintarev & Dr. Tjitze Rienstra

Examiners: Prof. Dr. Nava Tintarev & Dr. Tjitze Rienstra

Tutor: Aashutosh Ganesh

Desired prior knowledge: Data Analysis and Data Mining or ACML

Prerequisites: None.

Description: A key component of an artificially intelligent system is the ability to explain to a 
human agent the decisions, recommendations, predictions, or actions made by it and the process 
through which they are made. Such explainable artificial intelligence (XAI) can be required in a wide 
range of applications. For example, a regulator of waterways may use a decision support system 
to decide which boats to check for legal infringements, a concerned citizen might use a system to 
find reliable information about a new disease, or an employer might use an artificial advice-giver to 
choose between potential candidates fairly. For explanations from intelligent systems to be useful, 
they need to be able to justify the advice they give in a human-understandable way. This creates a 
necessity for techniques for automatic generation of satisfactory explanations that are intelligible 
for users interacting with the system. This interpretation goes beyond a literal explanation. 
Further, understanding is rarely an end-goal. Pragmatically, it is more useful to operationalize the 
effectiveness of explanations in terms of a specific notion of usefulness or explanatory goals such 
as improved decision support or user trust. One aspect of intelligibility of an explainable system 
(often cited for domains such as health) is the ability for users to accurately identify, or correct, 
an error made by the system. In that case it may be preferable to generate explanations that 
induce appropriate levels of reliance (in contrast to over- or under-reliance), supporting the user in 
discarding advice when the system is incorrect, but also accepting correct advice. 

The following subjects will be discussed:
1.	 Intrinsically interpretable models, e.g., decision trees, decision rules, linear regression.
2.	 Identification of violations of assumptions, such as distribution of features, feature interaction, 

non-linear relationships between features; and what to do about them.
3.	 Model agnostic explanations, e.g., LIME, scoped Rules (Anchors), SHAP (and Shapley values)
4.	 Ethics for explanations, e.g., fairness and bias in data, models, and outputs. 
5.	 Symbolic approaches to AI 
6.	 (Adaptive) User Interfaces for explainable AI
7.	 Evaluation of explanation understandability
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Knowledge and understanding: Students can explain the difference between different explanation 
approaches (e.g., global versus local models) and can identify which are suitable to use based on 
underlying assumptions and relative advantages and limitations.

Applying knowledge and understanding: Students can critically choose and apply XAI methods. 
Students can formulate evaluation protocols to validate the understandability of explanations, 
demonstrating awareness of the ethical, normative, and social consequences of their applications.

Making judgements: Students will be able to critically evaluate the quality (rigor of methodology), 
and ethical consequences, of approaches (systems or scientific publications) based on the XAI 
techniques taught.

Communication: Students will be able to communicate their ideas effectively in written form. They 
will be able to actively contribute to group-wise communication, and in both oral and written form 
present their models and outputs to specialists.

Learning skills: Students will be able to familiarize themselves, and critically assess XAI techniques 
beyond the scope of the course in order to solve a problem.

Study material: Course notes, required reading of scientific articles.

Assessment: Group project and individual written assignment

Recommended literature: 
•	 Molnar, Christoph. Interpretable Machine Learning (second edition). Lulu.com, 2022 (available 

free online)
•	 Rothman, Denis. Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and 

integrate reliable AI for fair, secure, and trustworthy AI apps, Packt, 2020.

ECTS: 6

Dynamic Game Theory (KEN4251)

Examiner: Prof. dr. Frank Thuijsman & dr. Monica Salvioli 

Desired prior knowledge:  Students are expected to be familiar with basic concepts from linear 
algebra, calculus, Markov chains and differential equations.

Prerequisites: None.

Description: The course will focus on non-cooperative games and on dynamic games in the 
following order: matrix and bimatrix games, repeated games, differential games, specific models 
of stochastic games, Stackelberg games, games in extensive form and evolutionary games. These 
are games in which the players are acting as strategic decision makers, who cannot make binding 
agreements to achieve their goals. Instead, threats may be applied to establish stable outcomes. 
Besides, relations with population dynamics and with “learning” will be examined. Several examples 
will be taken from biological settings.

Knowledge and understanding: Students are able to recognize and classify the main types of 
dynamic games, i.e. repeated games, stochastic games, Stackelberg games, differential games, and 
evolutionary games and formulate the main solution concepts value, optimal strategies, Nash- and 
Stackelberg equilibrium

Applying knowledge and understanding: Students are able calculate solutions of the different types 
of dynamic games.
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Making judgements: Students are able to explain advantages and disadvantages of different 
solution concepts. They are able to judge correctness of solutions presented.

Communication: Students are able to explain and defend correctness of their solutions.

Learning skills: By the end of the course, students will be able to autonomously and critically reflect 
upon the pros and cons of different types of games for modelling competition and cooperation. This 
includes considerations on the computational aspects with respect to different solution concepts.

Study material: Handouts will be provided.

Recommended literature: none.

Exam: There will be a closed book written exam at the end of the course.

ECTS: 6

Planning and Scheduling (KEN4253)

Examiner: Dr. Steven Kelk

Desired prior knowledge: Data Structures & Algorithms. Discrete Mathematics. Graph Theory.

Prerequisites: None.

Description: In many real-world processes, particularly in industrial processes and logistics, decisions 
need to be taken about the time of the completion of (sub)tasks, and the decision about what 
production machines complete the tasks. There are often constraints on the order in which tasks, 
or ‘jobs’ can be performed, and there are usually capacity constraints of the machines. This leads to 
natural, industrially critical optimization problems. For example, a company might choose to buy 
many machines to process jobs, but then there is a risk that the machines will be underused, which 
is economically inefficient. On the other hand, too few machines, or an inappropriate ordering of 
tasks,  may lead to machines spending a significant amount of time standing idle, waiting for the 
output of other machines, which are overcrowded with tasks. In this course, we look at various 
mathematical models and techniques for optimizing planning and scheduling problems, subject 
to different optimality criteria. We will discuss, among others, single-machine models, parallel-
machine models, job-shop models, and algorithms for planning and scheduling (exact, approximate, 
heuristic) and we also touch upon the computational complexity (distinguishing between ‘easy’ and 
‘difficult’ problems) of the underlying problems. Last but not least, we will also introduce integer 
linear programming as a uniform and generic tool to model and solve planning and scheduling 
problems.

Knowledge and understanding: Students will possess the mathematical and algorithmic tools 
to model and solve planning/scheduling problems. Students will be able to recognize real-world 
problems in the unified theory and established language of planning and scheduling. 

Applying knowledge and understanding: Students will be able to apply the new techniques to 
various problems arising in real-world applications. Students will be able to deploy the standard 
algorithmic techniques, and be able to design new algorithmic solutions, and to argue about their 
performance properties.

Making judgements: Students will understand under which circumstances different planning/
scheduling problems are computationally tractable, and will judge algorithmic technique can be 
used to exactly or approximately solve these problems.

Communication: Students will be able to analytically argue about correctness of the used 
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algorithmic approaches. Students will be able to explain modelling approaches to planning and 
scheduling problems in the language of the theory of planning and scheduling.

Learning skills: Students will enhance their study skills such as time management, effective 
reading, critical thinking and reading, exact and unambiguous writing and formulating of ideas and 
statements, and reflection on marked work. Along the way, students will improve general learning 
skills such as self-motivation, careful listening and giving instructions, and openness to new 
knowledge. Students will also be exposed to autonomous self-study.

Study material: Appropriate study material will be provided throughout the course.

Recommended literature: None

Assessment: Written exam (75%) at the end of the course, and graded exercises (25%) throughout 
the course.

ECTS: 6

Building and Mining Knowledge Graphs (KEN4256)

Examiner: Prof. dr. Michel Dumontier

Desired prior knowledge: Introduction to Computer Science

Prerequisites: None.

Description: Knowledge graphs are, seen through the semantic-web lens, large-scale, machine-
processable representations of entities, their attributes, and their relationships. Knowledge graphs 
enable both people and machines to explore, understand, and reuse information in a wide variety of 
applications such as answering questions, finding relevant content, understanding social structures, 
and making scientific discoveries. However, the sheer size and complexity of these graphs present a 
formidable challenge particularly when mining across different topic areas.

In this course, we will examine approaches to construct and use knowledge graphs across a diverse 
set of applications using cutting-edge technologies such as machine learning and deep learning, 
graph databases, ontologies and automated reasoning, and other relevant techniques in the area of 
data mining and knowledge representation.

Knowledge and understanding: Students will be able to:
•	 Define and describe the nature and attributes of a Knowledge Graph
•	 Identify and describe the components of a Knowledge Graph
•	 Distinguish between different representations for Knowledge Graphs
•	 Describe applications of Knowledge Graphs
•	 Identify advantages and disadvantages of Knowledge Graphs as compared to other formalisms
•	 Describe and execute approaches to construct and maintain Knowledge Graphs from structured 

and unstructured sources, across different domains
•	 Construct and query Knowledge Graphs to answer questions about their content using open 

standards such as RDF and SPARQL
•	 Use Large Language Models to construct Knowledge Graphs, and to retrieve their contents
•	 Execute link prediction and associated graph mining techniques to enrich information in Knowl-

edge Graphs
•	 Describe the FAIR principles and construct Knowledge Graph metadata using available standards
•	 Describe Knowledge Graph quality metrics and evaluate the quality of a Knowledge Graph
•	 Develop own Knowledge Graph solution for a problem of interest
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Applying knowledge and understanding: Students will be able to identify requirements and steps 
to convert knowledge in traditional data formats to Knowledge Graph formats. Students will 
also be able to implement such strategies. Students will be able to query Knowledge Graphs (for 
instance using SPARQL query language) to answer basic to intermediately advanced questions. 
Students will be able to implement basic reasoning strategies on Knowledge Graphs to answer 
intermediately advanced questions, which cannot be answered by SPARQL queries alone. Students 
will be able to implement popular methods to integrate different data sources by transferring them 
into a Knowledge Graph. Students will be able to enrich existing Knowledge Graphs with missing 
information using basic predictive algorithms. Students will be able to perform basic data quality 
assessment on Knowledge Graphs. Students will be able to assess the degree of compliance that 
Knowledge Graphs have with FAIR principles.

Making judgements: Students will be able to select which tools are most suitable for constructing, 
querying, visualising & reasoning with Knowledge Graphs. Students will be able to differentiate 
between different types of Knowledge Graphs, according to their representation, coverage and 
content. Students will be able to select which Knowledge Graph is appropriate for answering a 
particular question. Students will be able to diagnose incompleteness in a Knowledge Graph with 
respect to answering a particular question. Students will be able to evaluate the data quality and 
FAIRness of a Knowledge Graph.

Communication: Students will be able to explain the advantages of representing information on 
the web in Knowledge Graphs. Students will be able to communicate the steps required to convert 
information to a Knowledge Graph format. Students will be able to communicate to non-experts 
the main content and representational components of a Knowledge Graph. Students will be able to 
outline to non-experts the steps required to answer a question by querying a Knowledge Graph.

Learning skills: Students will be able to reflect critically on the challenges and open problems 
remaining in Knowledge Graphs research. Students will be able to formulate and propose strategies 
to answer complex questions using Knowledge Graphs. Students will be able to assess the feasibility 
of different combinations of methods for answering questions using Knowledge Graphs.

Study material: Slides for the labs and lectures will be released on Canvas just before the respective 
session in PDF format. 

Assessment: Individual project for application of knowledge and three group assignments to 
demonstrate understanding of core concepts. Assessments will be released in PDF format on Canvas 
according to the dates indicated in the previous slide for evaluation.

Recommended literature: Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., ... 
& Zimmermann, A. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4), 1-37.

Additional literature: A Semantic Web Primer. 3rd Edition. Grigoris Antoniou, Paul Groth, Frank van 
Harmelen and Rinke Hoekstra. 2012. MIT Press, ISBN: 9780262018289. 
Semantic Web for the Working Ontologist. 3rd Edition. James Hendler, Fabien Gandon, Dean 
Allemang. 2020. Morgan Kaufmann. ISBN-13: 978-1450376174; ISBN-10: 1450376177. 
Practical RDF. Shelley Powers. 2003. O’Reilly Media, Inc. ISBN: 9780596002633. 
Learning SPARQL. Bob DuCharme. 2011. O’Reilly media, Inc. ISBN: 9781449306595. 
Programming the Semantic Web. Toby Segaran, Colin Evans, Jamie Taylor. 2009. O’Reilly Media, Inc. 
ISBN: 9780596153816.

ECTS: 6
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Period 1.5 & 2.5

Information Retrieval and Text Mining (KEN4153)

Examiner: Prof dr. ir. J.C. Scholtes

Desired prior knowledge: None.

Prerequisites: None.

Description: Normal search is about “Finding the needle in the haystack”. This course focusses on a 
more complex problem: “How does the needle look like and where is the haystack? Also explain me 
why!”

Building a full-text search engine may look trivial, but it is not! How do you search hundreds of 
billions of documents that can be located anywhere, with sub-second responds times? How do you 
find exactly what you are looking for without missing relevant information or having to plough 
through hundreds of irrelevant documents?  How can you find if you do not know exactly what you 
are looking for? How can you find information which is deliberately hidden? How do you know that 
your search engine has given you the right information? Where does it come from? Is the answer 
factually correct? 

In this course, we will teach you how to address these questions in three steps: (1) how is a search 
engine is constructed, optimized and used effectively, (2) How can techniques from the word 
of text-mining, information extraction, text classification, clustering, topic modeling and data 
visualization add to a better search experience, and (3) What is the best way to integrate chatbots 
with search engines. How to best guarantee factuality, avoid hallucinations and provide provenance 
and explainability of the chatbots’ recommendations.

Linear Algebra, Statistics, Deep Learning and Natural Language Processing play an important role in 
this course.

This course is complementary to the course Advanced Natural Language Processing (ANLP). Overlap 
is reduced to the necessary minimum. Both courses can be followed in any particular order. In 
the Information Retrieval and Text Mining course we focus more on creating a optimal search 
experience, in the Advanced Natural Language Processing course, we do a deep dive into the 
algorithms and models used for different language-related problems such as machine translation, 
abstracting, and dialogs with chatbots. Tutorials are shared between the two courses. 

Knowledge and understanding: The student will be able to select, understand and apply different 
phases and methods used to create applications that exhibit an optimal search experience or 
provide excellent analytical insights for natural language. In addition, the student learns to evaluate 
the quality of such methods according to best-practice standards as used in the field.

Applying knowledge and understanding: Students will be able to recognize applications of text 
mining, information retrieval and conversational AI in different domains such as consumer search, 
legal services, medical research, regulatory oversight, compliance, digital humanities, and customer 
services. After the course, the student can formulate an opinion or course of action when dealing 
with text-based AI-problems based on incomplete, limited and in part unreliable information. 
After the course, students can apply their knowledge and understanding in a manner that shows a 
scientific approach to their work or vocation. They are able to handle complex and ill-defined text-
based problems for which it is not a priori known if there is an appropriate solution, they know how 
to acquire the necessary information to solve the sub-problems involved, and they know how to 
proceed with problems for which there is no standard or reliable route to the solution.
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Making judgements: Upon completion of the course, students are able to recommend the most 
appropriate methods from the fields of text mining, information retrieval and conversational AI 
when confronted with problems involving search and analysis of textual unstructured data.

Communication: Students are able to communicate the (dis)advantages of several methods from 
the field of text mining and information retrieval to both an audience of non-experts.

Learning skills: After the course, the student has developed those learning skills that are necessary 
for a successful further career in text mining or information retrieval at the highest professional 
level. The student will be able to continue to develop their text-mining and information retrieval 
skills. The student is able to detect missing knowledge and abilities and to deal with them 
appropriately by finding and consulting resources that can help them to fill the gaps and new 
developments.

Study material: A syllabus and copies of the course slides will be used.

Recommended literature (not mandatory): Introduction to Information Retrieval. Christopher D. 
Manning, Prabhakar Raghavan and Hinrich Schütze. Cambridge University Press, 2008. In bookstore 
and online: http://informationretrieval.org and Feldman, R., and Sanger, J. (2006). The Text Mining 
Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press. 

Assessment: The result of various Colab tutorials and a project contributes 30% to the final 
examination of the course. The other 70% is determined by the theoretical exam. The theoretical 
exam is open book. For the project, students can select a research topic and a text corpus from 
the provided list (or another relevant open source collection) and implement a number of relevant 
search, text-mining or conversational AI operations by using the methods discussed in the course. 
The delivery of the project are the results of the experiments (presented at the end of the course) 
and a report discussing the methods used and the quantitative quality of the efforts undertaken. 

ECTS: 6

Introduction to Quantum Computing for AI and Data Science (KEN4155)

Examiners: Dr. Menica Dibenedetto & Dr. Georgios Stamoulis

Desired prior knowledge: Probability theory, linear algebra, design and analysis of algorithms

Prerequisites: None.

Description: In this course, we lay down the foundations and basic concepts of quantum computing. 
We will use the mathematical formalism borrowed from quantum mechanics to describe quantum 
systems and their interactions. We introduce the concept of a quantum bit and discuss different 
physical realizations of it. We then introduce the basic building blocks of quantum computing: 
quantum measurements and quantum circuits, single and multi-qubit gates, the difference 
between correlated (entangled) and uncorrelated states and their representation, quantum 
communication, and basic quantum protocols and quantum algorithms. Finally, we discuss the 
different types of noise involved in real quantum computers (coherent and incoherent errors, state 
preparation, projection and measurement) and their effect on performance, and outline current 
efforts for mitigating the issues.

Knowledge and understanding: Students will learn the fundamental principles and concepts behind 
quantum computing, protocols, and algorithms. Students will understand the differences between 
classical and quantum computation, and where the (theoretical) computational power of quantum 
machines comes from. Students will also get to understand the current challenges in building and 
using quantum computers.
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Applying knowledge and understanding: Students will be able to apply existing quantum 
algorithms as black-box to various simple computational problem. Students will further be able to 
analyse simple quantum algorithms for different computational problems.

Making judgements: Students will be able to judge how the potential computational power of 
quantum computing can be leveraged, and how it can be applied to other fields in a beneficial way.

Communication: Students will be able to discuss quantum computation critically and judge 
not only its benefits but, equally important, its shortcomings. Students will especially be able to 
communicate potential benefits of quantum computation to the fields of artificial intelligence and 
data science.

Learning skills: Students will practice learning entirely new computational concepts, and how to 
relate existing concepts (classical computation) to new concepts (quantum computation). Students 
will learn to critically reflect on  both the scientific literature and the societal expectations. Students 
will learn to self-study from state-of-the-art research articles, when classical text-books are not 
available.

Study material: To be announced.

Exam: Written exam (100%)

ECTS: 6

Symbolic Computation and Control (KEN4252)

Examiner: dr. ir. Philippe Dreesen

Desired prior knowledge: Linear Algebra, Calculus, Mathematical Modelling.

Description: This course consists of two interrelated parts. In the first part, we focus on basic 
techniques for the digital control of linear dynamical systems using feedback. We start by 
addressing system stability and we discuss the technique of pole placement by state feedback to 
solve the regulation problem. Then we introduce state observers to solve the regulation problem 
by output feedback. Next, we extend our scope to tracking problems. This involves the design 
of additional dynamics to characterize the relevant class of reference signals, which are then 
integrated with the earlier set-up for output feedback. Finally, we discuss the classical topic of 
optimal control, which can be employed to avoid using prototype systems for pole placement, and 
which allows the user to design a feedback law by trading off the cost involved in generating large 
inputs against the achieved tracking accuracy. In the second part, we address computational issues, 
related to the field of systems and control. Classically, computers have been designed primarily 
to perform approximate numerical arithmetic. Modern software packages for mathematical 
computation, such as Maple and Mathematica, allow one to perform exact and symbolic 
computation too. We shall explore this new area. It is demonstrated how speed, efficiency and 
memory usage considerations often lead to surprising and fundamentally different algorithmic 
solutions in a symbolic or exact context. Applications and examples involve stability of linear 
systems, model approximation, and linear matrix equations with free parameters. Practical classes 
serve to demonstrate the techniques and to make the student familiar with exact and symbolic 
computation.

Knowledge and understanding: Students familiarize themselves with state and output feedback 
to achieve control of dynamical systems. Concretely, they learn to (mathematically) build a basic 
stabilizing feedback controller for a linear input-output dynamical system, using a combination of 
different design techniques. Students learn methods for exact numerical and symbolic computation, 
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as used in algebraic computation with unspecified parameters. They also learn in which ways these 
are different from the more commonly used approximate numerical (floating-point) methods: in 
terms of accuracy, speed (complexity), and memory usage.

Applying knowledge and understanding: Students will be able to construct and implement, for a 
given linear dynamical input-output system: (a) stabilizing state feedback, (b) full state observer, 
and (c) additional dynamics to perform tracking of a specified output trajectory. They will also be 
able to assess the quality of a controller, regarding an optimal control LQ criterion, and in view of 
the desired settling time and the trajectory approximation. Students will be able to determine the 
stability of a given linear dynamical system in an exact and/or symbolic algebraic way. They will 
also be able to efficiently solve linear systems of (matrix) equations involving symbolic parameters, 
avoiding pitfalls, which arise from techniques from approximate numerical computation.

Making judgements: Students will be able to judge the quality of a feedback design for stabilization 
(regulation) or tracking. Students will be able to indicate which exact and symbolic computation 
methods will and will not be useful for a given parameterized problem, regarding speed and 
memory usage.

Communication: Students will be able to motivate the design of a feedback controller, 
the construction of a trajectory approximation, the design of a full state observer, and the 
implementation choices of the weights in LQ-design. They will be able to explain the concept of 
feedback in the area of control. Students can adequately discuss speed and efficiency properties of 
an algorithm (approximate numerical, exact numerical, symbolic) to specialists and non-specialists.

Learning skills: Students will be able to read and interpret basic scientific literature on control 
theory and on numerical and symbolic computation. They can use Matlab and the Control Toolbox 
and work out ideas computationally. Students can use some of the exact and symbolic functionality 
of Mathematica and work out ideas computationally.

Study material: Syllabus, provided on the study portal. Handouts.

Recommended Literature: Richard J. Vaccaro, Digital Control - A State-Space Approach, McGraw-Hill 
International Editions, 1995. ISBN 0-07-066781-0.Exam: Written exam by computer in two parts, 
each having a weight of 50% on the final grade: one midterm take-home exam with Matlab on part 
1 (control), one final classroom exam with Mathematica on part 2 (symbolic computation). The resit 
exam is on both parts of the course in a classroom setting.

ECTS: 6

Computer Vision (KEN4255)

Coordinator & examiner: Dr. Mirela Popa

Tutors: Subilal Vattimunda Purayil, Aashutosh Ganesh

Desired prior knowledge:  Basic knowledge of Python, linear algebra and machine learning. This 
course offers the basics on image processing although prior knowledge is also a plus.

Prerequisites: None.

Description: Can we make machines look, understand and interpret the world around them? Can 
we make cars that can autonomously navigate in the world, robots that can recognize and grasp 
objects and, ultimately, recognize humans and communicate with them? How do search engines 
index and retrieve billions of images? This course will provide the knowledge and skills that are 
fundamental to core vision tasks of one of the fastest growing fields in academia and industry: 
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visual computing. Topics include introduction to fundamental problems of computer vision, 
mathematical models and computational methodologies for their solution, implementation of real 
life applications and experimentation with various techniques in the field of scene analysis and 
understanding. In particular, after a recap of basic image analysis tools (enhancement, restoration, 
color spaces, edge detection), students will learn about feature detectors and trackers, fitting, image 
geometric transformation and mosaicing techniques, texture analysis and classification using 
unsupervised techniques, face analysis, deep learning based object classification, detection and 
tracking, camera models, epipolar geometry and 3D reconstruction from 2D views. 

Knowledge and understanding: Students will be able to apply the most suitable techniques 
for image pre-processing (e.g. enhancement, restoration), feature extraction, texture analysis, 
perspective geometry, camera models and topics on object recognition. In addition, they will be able 
to identify the most suitable techniques in a series of visual computing problems.

Applying knowledge and understanding: Students will be able to choose and/or construct solutions 
in a variety of professional/vocational contexts requiring image processing and computer vision 
(robotics, manufacturing, AI, web applications, surveillance). They will be able to build and assess 
methodologies for handling real-world complex problems in computer vision, making use of pre-
existing data for training their models.

Making judgements: Students will be able to choose and combine methods to tackle real-world 
computer vision problems, captured in real-life settings and having no obvious solutions. They 
will be able to propose and build techniques combining computer vision methods with machine 
learning instruments for scene understanding and object recognition.

Communication: Through small research projects, students will be able to communicate their 
findings and explain the rationale behind their choices in computer vision techniques for image/
video analysis.

Learning skills: After successful completion of the course, students will be able to analyze images 
and videos and retrieve or process content in order to derive useful information, applicable in a 
variety of domains (e.g. satellite imagery, surveillance, robotics, medical imaging, ambient assisted 
living).

Study material: A syllabus and copies of the course slides will be used along with the recommended 
literature.

Assessment: Written exam (50%) and two assignments (50%)

Recommended literature: 
•	 “Computer vision: algorithms and applications”. Szeliski, Richard. Springer Science & Business 

Media, 2010 (available online)
•	 “Computer Vision: A Modern Approach, 2nd Edition”. David A. Forsyth, University of Illinois at 

Urbana-Champaign .Jean Ponce, Ecole Normale Superieure, Paris
•	 “Computer Vision: Models, Learning and Inference”, Simon J.D. Prince 2012.

Additional literature:
•	 “Digital Image Processing”, Rafael C. Gonzalez & Richard E. Woods, Pearson, 3rd Edition, 2016. 
•	 “Machine Vision: Automated Visual Inspection and Robot Vision”, David Vernon, Prentice Hall,  

(available online at: https://homepages.inf.ed.ac.uk/rbf/BOOKS/VERNON/)
•	 OpenCV/Pytorch/Tensor Flow tutorials:  

https://docs.python.org/3/tutorial/ 
https://pytorch.org/tutorials/ 
https://colab.research.google.com 
https://docs.opencv.org/4.x/d9/df8/tutorial_root.html

ECTS: 6
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Intelligent Search and Games (KEN4123)

Examiners:  Prof. dr. Mark Winands & dr. Dennis Soemers.

Desired prior knowledge: Data Structures & Algorithms

Course description: In this course, the students learn how to apply advanced techniques in the 
framework of game-playing programs. The following subjects will be discussed:
1.	 Basic search techniques. Alpha-beta; A*.
2.	 Advanced search techniques. IDA*; B*, transposition tables; retrograde analysis and endgame 

databases; proof-number search and variants; multi-player search methods; Expectimax and 
*-minimax variants.

3.	 Heuristics. killer moves; history heuristic, PVS; windowing techniques; null-moves; forward-
pruning techniques; selective search.

4.	 Monte Carlo methods. Monte Carlo Tree Search (MCTS) techniques, enhancements, and 
applications; AlphaGo and AlphaZero approaches.

5.	 Video game AI techniques: World representations, GOAP, hierarchical task networks, behaviour 
trees.

Knowledge and understanding: The student can explain basic and advanced search techniques and 
can identify which of them to use either in a game context, or in problems with a similar structure.
Applying knowledge and understanding: Students have obtained the knowledge to develop, 
program, analyse, and apply advanced techniques autonomously to a wide variety of problems. 
They will also learn that adapting known techniques to fit a given problem can achieve a better 
performance.

Making judgements: Students will be able to judge the quality of approaches (systems or scientific 
publications) based on the techniques taught.

Communication: Students will be able to present the results of their game programs and search 
algorithms to specialists or non-specialists.

Learning skills: Students will be able to familiarize themselves with Game AI techniques beyond the 
scope of the course in order to solve a problem.

Study material: Course notes and other information made available.

Recommended Literature:
•	 Millington, I. (2019). Artificial Intelligence for Games, 3rd Edition, CRC Press, ISBN: 978-

1138483972
•	 Russell, S.J. and Norvig, P. (2020). Artificial Intelligence: A Modern Approach, 4th edition.
•	 Pearson. ISBN ‎ 0-13-461099-7.
•	 Yannakakis, G.N. and Togelius, J. (2018) Artificial Intelligence and Games, Springer, Berlin. ISBN 

978-3-319-63519-4 (eBook) 978-3-319-63518-7 (hardcover)

Assessment: Written exam (50%) + a large practical task (50%).

ECTS: 6
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Quantum Algorithms (KEN4235)

Examiner: Dr. Georgios Stamoulis 

Desired prior knowledge: Fundamentals of Quantum Computation, Very Good command of Linear 
Algebra, Algorithms and Complexity 

Prerequisites: Introduction to Quantum Computing for AI and Data Science 

Description: This course will provide a thorough examination of the most important Quantum 
Algorithms. We will see how the quantum mechanical formalism gives rise to a new algorithmic 
design paradigm with the potential of performing certain computational tasks faster than we 
could do using a classical computer. The course will start with some basic algorithms like Bernstein-
Vazirani and Simon’s algorithm, then we will move on to Quantum Fourier Transform and Phase 
Estimation. Then, a thorough discussion of Shor’s celebrated algorithm for factoring will follow, 
together with a detailed coverage of Grover’s unstructured search algorithm, its optimality, 
adaptations, and applications. Further, we will move on to the HHL algorithm for solving systems 
of linear equations, a crucial component of many quantum algorithms, including Machine Learning 
quantum algorithms. In the last part of the course, we will present algorithms for quantum 
simulation, discuss quantum walks, and basics of quantum complexity theory by introducing and 
discussing the BQP and QMA complexity classes. 

Knowledge and understanding: Students will learn how and why certain computational tasks can 
be performed faster in a quantum computer, what are the major techniques used in the design of 
such algorithms and, equally important, what are the limitations of the quantum algorithm design.  

Applying knowledge and understanding: Students will be able to apply these theoretical 
techniques to design and analyze algorithms for many problems that could benefit from a quantum 
computation point of view. 

Making judgements: Students will be able to judge whether proposed quantum algorithms indeed 
offer speedups over classical ones and how they may be able to achieve that. 

Communication: Students will practice technical communication of research work in this area, 
describing and critically evaluating the work’s contributions. 

Learning skills: Students will learn from lectures/textbook/notes and then use this knowledge to 
read relevant research papers. 

Study material: Lectures, textbook. 

Assessment: 75% final exam, 25% in-class presentation summarizing a topic of relevant interest in 
class. 

Recommended literature: Quantum Computation and Quantum Information: 10th Anniversary 
Edition Anniversary Edition, Michael A. Nielsen, and Isaac L. Chuang  

Additional literature: Papers, notes and other relevant material will be distributed in class. 

ECTS: 6
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Period 2.2

Quantum AI (KEN4236)

Coordinator & examiner: Dr. Menica Dibenedetto 

Tutors: Vincenzo Lipardi

Desired prior knowledge: Linear Algebra, Classical Machine Learning

Prerequisites: Introduction to Quantum Computing for AI and Data Science

Description: This course explores the groundbreaking intersection of quantum computing and 
artificial intelligence, focusing on how quantum technologies can potentially revolutionize AI 
paradigms. The curriculum delves into quantum algorithms tailored for AI tasks, addressing 
complex problems that are currently intractable for classical computers. Students will gain an 
understanding of how quantum principles can enhance machine learning algorithms, improve 
optimization tasks, and facilitate data processing capabilities. Through theoretical lessons and 
practical laboratory sessions, students will learn about quantum mechanics fundamentals 
applicable to AI, quantum circuit design, and quantum algorithm development. Special emphasis 
will be placed on hybrid models that integrate classical and quantum computing techniques to 
solve real-world problems. The course will provide a mix of both theoretical and technical insights, 
as well as practical implementation details by using the main quantum programming languages 
and quantum software available. 

Formal models that will be investigated: Various QAI algorithms and their possible applications 
for near term devices will be presented. The students will be guided through the steps of 
creating effective quantum models for supervised and unsupervised tasks and its evaluation in 
the near-term devices. Discussions will include essential quantum AI algorithms and quantum 
generalizations of classical learning models. Various quantum machine learning models including 
quantum neural networks, quantum support vector machines and quantum kernel estimator will 
be discussed in detail. Quantum algorithms for decision problems based on Hamiltonian time 
evolution, quantum search models based on Grover algorithm and quantum game theory will 
be introduced. A significant focus will be on developing efficient methods for encoding data into 
quantum states, one of the main problems in the current state of machine learning. We will then 
explore quantum machine learning algorithms applied to state preparation focusing on loading the 
underlying probability distribution of the dataset, as Quantum Generative Adversarial Networks 
(GANs) and Quantum Boltzmann Machine. 

Knowledge and understanding: Students will gain a deep understanding of the intersection 
between artificial intelligence and quantum computing, learning to assess the capabilities and 
limitations of current quantum technologies in enhancing AI applications, exploring different 
quantum machine learning models. 

Applying knowledge and understanding: Learners will apply theoretical concepts in practical 
settings, developing and implementing quantum algorithms and models that can be applied to 
machine learning and optimization real-world problems.

Making judgements: Students will evaluate the effectiveness of quantum AI solutions, making 
informed decisions about when and how to implement these technologies. This course will 
formulate and answer the questions: “how quantum computing can provide a computation boost to 
AI, enabling it to tackle more complex problems?” and “how can AI produce functional applications 
with quantum computers?”.
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Communication: Participants will enhance their ability to articulate complex quantum AI concepts 
clearly and effectively to a diverse audience, including those without a background in quantum 
physics.

Learning Skills: Learners will develop critical thinking and problem-solving skills in quantum 
computing and AI, fostering a mindset of continuous learning and adaptation to new technologies.

Study Material: Quantum Machine Learning Texts, Online Quantum Computing Simulators, Peer-
reviewed Journal Articles

Assessment: Assignment based

Recommended literature: “Machine Learning with Quantum Computers” by M. Schuld, F. 
Petruccione, Second Edition

Additional literature: Research articles and papers will be provided throughout the course.

ECTS: 6

Quantum Information and Security (KEN4237)

Examiner: Dr. David Mestel

Desired prior knowledge: Quantum states, operators and measurements

Prerequisites: Introduction to Quantum Computing for AI and Data Science

Description: In this course we will consider the power of quantum mechanics not in accomplishing 
computational or ‘algorithmic’ tasks, but instead for communication- and security-related tasks.  
The strange properties of the quantum world turn out to be remarkably useful for these.  For 
example, we can exchange secret messages in a way that is unconditionally secure: secrecy is 
guaranteed by the physical laws of nature, rather than (as in ordinary cryptography) based on an 
assumption that a particular computational problem is too hard for the adversary.

We will begin by covering the theoretical techniques needed to study security-related protocols, 
where it is fundamental that some parties will not know what state a particular quantum system 
is in.  After a thorough grounding in the ‘density matrix’ formalism which is used to represent this 
uncertainty, we will cover quantitative measures of this kind of uncertainty, for instance quantum 
versions of classical entropy.  We will then look at a variety of protocols (e.g. quantum money, 
quantum key distribution,…), and how to define and prove the desired properties.

Knowledge and understanding: Students will learn to use the `density matrix’ formalism to reason 
about quantum states under uncertainty, and about quantitative measures of uncertainty and 
entanglement.  They will also learn about the fundamentally `contextual’ nature of quantum 
mechanics, which is the foundation for all of the protocols we will study.

Applying knowledge and understanding: Students will be able to apply these theoretical techniques 
to analyse protocols and prove that they have desirable security properties.

Making judgements: Students will be able to judge whether protocols are suitable for particular 
goals.

Communication: Students will practice technical communication of research work in this area, 
describing and critically evaluating the work’s contributions.
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Learning skills: Students will learn from lectures/textbook and then use this knowledge to read a 
research paper which they will present in class.

Study material: Lectures, textbook.

Assessment: 70% final exam, 30% in-class presentation summarising a research paper in the topic.

Recommended literature: T. Vidick and S. Wehner, `Introduction to quantum cryptography’, 
Cambridge University Press 2024

Additional literature: M. Wilde, `Quantum information theory’, Cambridge University Press 2013

ECTS: 6

Period 2.4

Agents and Multi-Agent Systems (KEN4111)

Coordinator & examiner: Prof. dr. Gerhard Weiss

Desired prior knowledge: Basic knowledge and skills in programming.

Description: The notion of an (intelligent) agent is fundamental to the field of artificial intelligence. 
Thereby an agent is viewed as a computational entity such as a software program or a robot 
that is situated in some environment and that to some extent is able to act autonomously 
in order to achieve its design objectives. The course covers important conceptual, theoretical 
and practical foundations of single-agent systems (where the focus is on agent-environment 
interaction) and multi-agent systems (where the focus is on agent-agent interaction). Both types 
of agent-based systems have found their way to real-world applications in a variety of domains 
such as e-commerce, logistics, supply chain management, telecommunication, health care, and 
manufacturing. Examples of topics treated in the course are agent architectures, computational 
autonomy, game-theoretic principles of agent-based systems, coordination mechanisms (including 
auctions and voting), and automated negotiation and argumentation. Other topics such as ethical 
or legal aspects raised by computational agency may also be covered. In the exercises and in the 
practical part of the course students have the opportunity to apply the covered concepts and 
methods.

Formal models that will be investigated: Coordination and interaction models from game theory 
and social choice theory.

Knowledge and understanding: The student is able to describe and explain single- and multi-agent 
concepts and methods, and to analyse their strengths and shortcomings.

Applying knowledge and understanding: The student is be able to apply the gained knowledge in 
concrete application scenarios and practical applications.

Making judgements: The student is be able to judge for a given problem whether and in how far it is 
beneficial to use an agent-based approach for its solution.

Communication: The student is able to motivate and explain benefits and shortcomings of their 
usage in a given application, and thereby showing sufficient understanding of single- and multi-
agent concepts.
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Learning skills: The student is able to study independently and critically literature on single- and 
multi-agent technology, including, in particular, literature describing new developments in the 
methods and techniques covered in this course.

Study material: Course slides; supplementary material to be announced.

Assessment: Practical assignments (30%) and written exam (70%)

Recommended literature: 
•	 Stuart Russell and Peter Norvig (2010). Artificial Intelligence. A Modern Approach. 3rd edition. 

Prentice Hall. 
•	 Gerhard Weiss (Ed.) (2013, 2nd edition): Multi-agent Systems. MIT Press.
•	 Mike Wooldridge (2009, 2nd edition): An Introduction to Multi Agent Systems, John Wiley & Sons 

Ltd.
•	 Yoav Shoham and Kevin Leyton-Brown (2009): Multi-agent Systems. Algorithmic, Game-Theoret-

ic, and Logical Foundations, Cambridge University Press.

ECTS: 6

Period 2.5

Autonomous Robotics Systems (KEN4114)

Examiner: Dr. Rico Möckel.

Desired prior knowledge: Discrete Mathematics, Linear Algebra, Probabilities and Statistics, Data 
Structures and Algorithms, Machine Learning, Search Techniques.

Prerequisites: None.

Description: Operating autonomously in unknown and dynamically changing environments is a 
core challenge that all robotic systems must solve to work successfully in industrial, public and 
private areas. Currently popular robotic systems that must demonstrate such capabilities include 
self-driving cars, autonomously operating drones, and personal robotic assistants. In this course, 
students obtain deep knowledge in creating autonomous robotic systems that can operate in 
unknown and dynamically changing environments by autonomously modelling and navigating 
in such environments. Students learn to approach these challenging tasks through three main 
techniques: swarm intelligence, model-based probabilistic frameworks, and (mostly) model-free 
techniques from artificial evolution and machine learning.

Knowledge and understanding: Students gain a deep understanding of the challenges in 
autonomous robotic systems and how these challenges are addressed in state-of-the-art systems. 
Students learn about and practice techniques for autonomous mapping, localization, navigation, 
sensing, modelling robot motion, planning, and decision-making. Through the course, students 
obtain in-depth knowledge and hands-on experience in a variety of algorithms and techniques 
including Bayesian filters (like Kalman Filters, Extended Kalman Filters, Histogram Filters, and 
Particle Filters), artificial neural networks, evolutionary algorithms, and swarm intelligence.

Applying knowledge and understanding: After successful completion of the course, students 
will have obtained in-depth knowledge to understand, adapt, apply, and autonomous robotics 
systems. Students obtain the ability to select from a variety of available tools feasible solutions 
for the complex and rather ill defined problem domains of autonomous robotic systems and to 
predict the resulting consequences of their choices. Furthermore, students learn how to choose, 
apply, formulate, and validate models of autonomous robotic systems and of appropriate control 
techniques from artificial intelligence for these systems.
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Making judgements: Students will be able to comprehend and to critically judge scientific 
publications on autonomous systems, artificial evolution, and swarm intelligence. From this 
literature, students are able to search for and to critically process information to solve given 
ill-defined but in practice highly relevant problems in autonomous systems. Students are able 
to critically discuss social, economic, and ethical consequences of artificial intelligence and 
autonomous decision-making.

Communication: Students learn to critically discuss challenges and professional solutions in 
autonomous robotic applications with both experts and non-experts.

Learning skills: The course prepares students to work on robotic applications in professional 
research and business environments. Students will be able to autonomously acquire new skills 
and knowledge to develop, program, analyse and apply advanced techniques to a wide variety of 
problems.

Study material: Thrun et al. (2005), Probabilistic Robotics, The MIT press, ISBN-13: 978-0262201629. 
Lecture material and publications provided during the lecture.

Assessment: The final course grade is 80% of the final written “closed-book” exam grade plus 20% 
of the practical group assignments grades.

Recommended literature: Floreano and Nolfi (2000), Evolutionary Robotics, The MIT press.  ISBN-13: 
978-0262640565.  
Dario Floreano und Claudio Mattiussi (2008), Bio-Inspired Artificial Intelligence: Theories, Methods, 
and Technologies, ISBN-13: 978-0262062718

ECTS: 6

Reinforcement Learning (KEN4157)

Coordinators: Dr. ir. Kurt Driessens & Dr. Dennis Soemers 

Examiners: Dr. ir. Kurt Driessens & Dr. Dennis Soemers

Desired prior knowledge: Machine Learning

Prerequisites: None.

Description: Reinforcement learning is a type of machine learning problem in which the learner 
gets a (delayed) numerical feedback signal about its demonstrated performance.  It is the toughest 
type of machine learning problem to solve, but also the one that best encompasses the idea of 
artificial intelligence as a whole. In this course we will define the components that make up a 
reinforcement learning problem and will see what the important concepts are when trying to solve 
such a problem, such as state and action values, policies and performance feedback.  We will look 
at the different properties a reinforcement learning problem can have and what the consequences 
of these properties are with respect to solvability.  We will discuss value based techniques as well 
as direct policy learning and learn how to implement these techniques. We will study the influence 
of generalisation on learning performance and see how supervised learning (and specifically deep 
learning) can be used to help reinforcement learning techniques tackle larger problems. We will also 
look at the evaluation of learned policies and the development of performance over time.   

Formal models that will be investigated: Markov Decision Processes

Knowledge and understanding: Students will be able to explain the setup of a reinforcement 
learning problem and list its formal components, explain the difficulties faced when adding 
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function approximation to reinforcement learning, explain the origins of the learning signal for 
policy gradient methods for reinforcement learning.

Applying knowledge and understanding: Students can implement and apply online and offline 
tabular techniques of value based reinforcement learning algorithms, apply the use of function 
approximation in value based reinforcement learning algorithms, implement and apply policy 
gradient methods for discrete and continuous action tasks and deep learning methods to 
reinforcement problems.

Making judgements: Students will be able to judge the suitability of reinforcement learning 
techniques as a solution for an AI problem, choose/select between exploration and exploitation 
tradeoff methods suited to the problem faced, interpret and judge the results of a reinforcement 
learning agent.

Communication: Students will gain a working knowledge of reinforcement learning as a problem, 
and of the state of the art in solution techniques and will be able to motivate his/her choices 
concerning the application of these techniques.

Learning skills: Students will learn that the state of the art in reinforcement learning continues 
to develop at a rapid pace and that becoming and staying an expert in the domain will require 
continued learning.

Study material: Course slides to support the lectures; supplementary material consisting of research 
papers and book chapters.

Assessment: Assessment for this course is based on the construction of a portfolio with which 
students prove that they attained all learning goals, at which point they will pass the course. The 
level of a passing grade is determined by the quality of a large final research and implementation 
assignment.   

Recommended literature: Reinforcement Learning: An Introduction by R. Sutton and A. Barton

Additional literature: Algorithms for Reinforcement Learning by C. Szepesvári; Reinforcement 
Learning and Optimal Control by D. Bertsekas

ECTS: 6
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3.11 Master’s thesis AI & DSDM (KEN4160 & KEN4260) 

The Master’s Artificial Intelligence and Data Science for Decision Making will be completed 
by writing a master’s thesis. The thesis is produced individually and is the result of a master’s 
research project that runs during the second semester of year 2 of the master’s programme. In 
the preliminary phase, the emphasis is on self-study, subject determination, planning and some 
preliminary research. Then the actual research is started. The final phase is used to finalize the 
master’s thesis. The master’s project is completed by a public on-site presentation and discussion 
of the results (also known as a defence of the thesis). The master’s thesis is supervised by one of the 
senior researchers of the Department of Advanced Computing Sciences. In principle, there should 
be no confidentiality agreements for a thesis, and staff members cannot be expected to commit to 
these.

Exam: Master’s thesis and presentation.

ECTS: 30

* Note that when you enrol in February, you follow your electives in period 2.4, 2.5 and 2.6 and work on 
your master’s thesis in period 2.1, 2.2, 2.3.

Master’s thesis Artificial Intelligence and Data Science for Decision Making 

Master thesis is an individual work. The research is done by the guidance of the supervisor(s), the 
thesis is written individually, taking a feedback of the supervisor into account, and the thesis is 
concluded by a thesis defense. If relevant, the thesis is handed in together with the source code, 
data, or any other supporting material. In order to start working on the thesis, a student needs to 
have obtained at least 70 ECTS (among which are 40 credits of the first year).

General procedure
The process of writing a master’s thesis consists of 6 phases. With the exception of the first phase, it 
is scheduled in the last semester of the master’s study. The time frame given below is an indication 
for these phases.

Phase 1: Topic selection
At the end of the first semester of an academic year, the students are informed of the main 
directions of research in the research areas at the Department of Advanced Computing Sciences. 
Next to this, the master’s programmes maintains a website of concrete thesis topics, which is 
updated annually. Based on this information, students acquire more information about specific 
possibilities in the areas by means of individual discussions with relevant researchers available. 
These discussions take place upon the initiative of the student. 

Phase 2: Thesis Research Plan
Before the actual work on the thesis, each student must have chosen a thesis topic and a principal 
thesis supervisor. The student creates a thesis research plan, which is to be signed by the student 
and the two prospective thesis examiners, and then handed over to the master’s thesis coordinator. 
The plan is sent to the Board of Examiners for approval.

The students will be invited to present their thesis topic, and the related work in a Master-thesis 
seminar, in the presence of fellow students and thesis supervisors.

Phase 3: Research
After the thesis plan has been approved, the student carries out his/her own research. This research 
process will be guided by the thesis supervisor through a series of regular appointments, preferably 
on a weekly basis. 
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The students will be invited to present the first research achievements, with audience staff 
members of the Department of Advanced Computing Sciences and fellow students.

Phase 4: Writing
At the end of the main research phase, the focus is on writing of the thesis. The student can expect 
at least one feedback on the text from the supervisor, before handing-in the final version of the 
thesis. The two examiners will evaluate the final version of the thesis shortly before the thesis 
defence.

Phase 5: Preparation for presentation
In the last week, , the student prepares a final presentation of the thesis research. This individual 
presentation will have a maximum length of 30 minutes, followed by 15 minutes of discussion 
between the student and the two examiners.

Phase 6: Presentation
The master’s thesis defense takes place upon agreement of the supervision team. The defence is 
public and takes place on the premises of the department.
 
Requirements and assessment 
For the master’s thesis research, every student has to conduct a short scientific research. This 
can be an empirical or a theoretical research. The topic is open, as long as it fits into the field of 
the master’s programme. Staff of the Department of Advanced Computing Sciences will briefly 
introduce their main areas of research, but students are encouraged to propose a research topic 
themselves. The topic and the research question have first to be approved by the prospective 
examiner. This plan will be signed by the student and the prospective examiners and then handed 
in to the Board of Examiners for the formal approval. It is possible to execute the master’s thesis 
research as an external training period. This should be well defined in the master’s research plan. 
In this case, the plan should also include the name of the company, the name of the external 
supervisor, the size of the project and any agreements about payment and confidentiality. The plan 
should also be signed by the external supervisor. 

The research needs to be original in such a way that the thesis supervisor is convinced that this 
research has not been done before. The research also needs enough depth and still it must be 
possible to finish it in the set amount of time. Every thesis is an individual work.

The thesis is graded by the examiners using a standard assessment form, available on Canvas. The 
weighing of these aspects is up to the examiners.

Content aspects 
The thesis describes the problem statement, research questions, approach and results of the 
research. This has to be done in a clear, structured and scientific manner. This includes:
•	 a clear introduction in which the problem statement and research questions are presented;
•	 the master’s student shows proper analysis of complex issues in a new context and is able to 

formulate a proper problem statement;
•	 a clear conclusion, based solely on the already used thought out principles and derived results; 
•	 a clear line is shown between problem statements, approach, methods and the derived results; 
•	 a motivation of the followed approach, reflecting on standard methods and their 

presuppositions, 
•	 an adequate description of the followed approach;
•	 a purposeful and systematic way of collecting data;
•	 an honest, clear and concise description of the derived results, if necessary using tables;
•	 an analysis and discussion of the results;
•	 the usage of relevant and recent literature for the reasoning in the thesis.
•	 the correct usage of references.
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Design aspects
Correct scientific references have to be used. Images and tables are accompanied by an index and 
caption. Mathematical formula, definitions, etc. have to be properly designed and numbered. The 
start and end of mathematical formulae have to be properly defined.

Language aspects
The thesis has to be written in English, considering correct spelling, syntactical structure of 
sentences and structure of content in paragraphs. The target audience consists of fellow master’s 
students and lecturers. Any jargon and/or abbreviations have to be explained unless they are 
common knowledge for this audience.

Citations
It is allowed to use several short citations. These citations have to be clearly referenced and have to 
be typographically distinguishable (that is, citations are placed in quotes). Non-allowed citations or 
missing references will result in a non-pass.

173 - Student Handbook



4	 Facilities for Students

In this chapter, you will get an overview of the facilities that Maastricht University offers its 
students.

4.1	 Student Affairs Office

The Student Affairs Office, among other things, takes care of the organization and administration of 
the education. 

Visiting address: Paul-Henri Spaaklaan 1, 6229 GT Maastricht
Postal address: P.O. Box 616, 6200 MD Maastricht, the Netherlands.

Office hours:
PHS, C.1006 daily between 10h00 - 11h00 and 15h00 - 16h00.

Contact:
Admissions: dacs-admissions@maastrichtuniversity.nl 
Tel.: +31(0)43 388 26 77

Exam Administration: dacs-examination@maastrichtuniversity.nl 
Tel.: +31(0)43 388 35 25

Scheduling: dacs-scheduling@maastrichtuniversity.nl 
Tel.: +31(0)43 388 35 25

International Relations (exchange):  dacs-iro@maastrichtuniversity.nl 

Student Affairs Office: dacs-studentaffairs@maastrichtuniversity.nl

4.2	 Administrative structure of the Faculty

The administrative structure of the Faculty is laid down in the faculty regulations. 

The dean is responsible for the faculty’s administration. More information is to be found on the 
website:  https://www.maastrichtuniversity.nl/nl/over-de-um/faculteiten/faculty-science-and-
engineering.

Faculty Board
The Faculty Board, chaired by the dean of the Faculty of Science and Engineering, runs the Faculty. 
The Faculty Board is charged with the general management and administration, as well as its policy 
regarding academic research and education.

Faculty Council
The Faculty Council is entitled to submit proposals and present their opinion to the Faculty Board 
regarding any matters relating to faculty administration, policy, education and research. The Faculty 
Council has rights of approval, e.g. regarding faculty regulations, research programmes, and the 
implementation of a binding study advice, and rights of advice, e.g. regarding the budget.

Directors of Studies
The programme directors dr. Pietro Bonizzi for both Bachelor programmes and dr. Matus Mihalak 
for the Master programmes are responsible for the organization and coordination of all teaching 
activities. The Education Programme Committee (EPC) advises the programme directors.
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Education Programme Committee
There is one EPC for the Bachelors Data Science and Artificial Intelligence, Computer Science and 
the Masters Data Science for Decision Making and Artificial Intelligence. The EPC is responsible for 
advising the Faculty Board, the Programme Directors and the Board of Examiners. Furthermore, the 
EPC is entitled to advice in any subject related to the programme, and consists out of ten members, 
five students and five members of the academic staff. In addition, the quality assurance officer has 
the role of advisor in the committee.

All correspondence for the Education Programme Committee should be addressed to 
dacs-secretariat@maastrichtuniversity.nl or by postal mail to:
Department of Advanced Computing Sciences - Maastricht University
P.O. Box 616, 6200 MD Maastricht.

Board of Examiners
The Board of Examiners is in charge of the organization and supervision of the examinations and is 
appointed by the Faculty Board. 

All correspondence for the Board of Examiners should be addressed to  
dacs-boe@maastrichtuniversity.nl or by postal mail to:
Department of Advanced Computing Sciences - Maastricht University
Board of Examiners, 
P.O. Box 616, 6200 MD 
Maastricht

Board of Admissions for the Master’s Programmes
The Board of Admissions is responsible for granting the admission requests for entering a master’s 
programme and is appointed by the Faculty Board. All correspondence for the Board of Admissions 
should be addressed to dacs-admissions@maastrichtuniversity.nl or by postal mail to:
Department of Advanced Computing Sciences - Maastricht University
Student Affairs Office, 
P.O. Box 616, 6200 MD 
Maastricht

It is possible to follow incidental courses at the transnational University Limburg (located at 
Hasselt University, Belgium). Students who want to make use of this possibility should individually 
ask permission to the Board of Examiners of the master’s programmes AI and DSDM, Maastricht 
University. More information on the transnational University Limburg, its staff members, and 
information on the content of the courses can be found at: www.uhasselt.be/informatica

4.3 Teaching material

For each project in the Bachelor programmes, a project book is published. The project books and 
the education schedules of each period are available two weeks before the start of a new period, 
at the latest. The study material (= obligatory literature) or recommended literature of a course is 
announced at the first lecture of the course and is available on the course page in Canvas. 

4.4. Participation in the Education

The students are expected to be available from Monday through Friday from 08.30 to 18.00. for 
educational activities.

175 - Student Handbook

mailto:dacs-secretariat%40maastrichtuniversity.nl?subject=
mailto:dacs-boe%40maastrichtuniversity.nl%20?subject=
mailto:dacs-admissions%40maastrichtuniversity.nl?subject=
http://www.uhasselt.be/informatica


4.5. Announcements on Educational Matters 

Announcements concerning educational matters will be published through Canvas. Students are 
mainly approached through e-mail and through Canvas. We advise students to check for new 
announcements/emails daily.  

4.6. Change of Address Student 

Except for Canvas, the Student Affairs Office makes use of mailings to students. If there is a change 
in the study address or the address of the student’s parents, this should immediately be changed in 
Studielink. Do not forget to mention the commencing date of the change. During the academic year, 
the student’s study address is considered as their postal address.  
You may contact dacs-admissions@maastrichtuniversity.nl for help. 

4.7. Project Rooms

Scheduled practical lectures have priority over private use of the project rooms by students. The 
rooms are open to students from Monday through Friday from 08.00 until 18.00 outside of project 
teaching hours. Wireless internet is available throughout the whole building. On this webpage you 
can find out how to log in.   
For questions about the system management, please refer to the system managers of the 
Department of Advanced Computing Sciences, tel. +31(0)43-388 54 93 or by mail: 

Lo-fse@maastrichtuniversity.nl.

House rules for all project/meeting rooms;
•	 Users are not allowed to download illegally acquired materials;
•	 Users are not allowed to illegally download materials
•	 Users are not allowed to install illegally acquired software;
•	 Users should use their own devices for saving data, or save your data on your personal network 

drive (I:);
•	 Users should handle the furniture with care;
•	 For the regulation of the air conditioning system, students may contact the Student Support 

staff.

4.8. Faculty Counsellors for Students
 
Study Adviser
The student counsellors Tessa Fox, Wendy Brandt and Eva Knip are staff members whom you can 
contact if you have any questions concerning your study and can be reached at telephone number 
043-3883561, in rooms C2.012, C2.014 & C2.016 at PHS 1,  
or through dacs-studyadvice@maastrichtuniversity.nl. 

They are familiar with the organization of the education, the faculty organization and the study. 
The student counsellor is a primary advisor for students. If your study comes to a standstill for 
whatever reason, you can contact the student counsellor. It is also the right person to talk to if 
you have any questions to which you cannot find any answers in the faculty prospectus or during 
faculty information meetings. But also in case of personal circumstances due to which your study 
or personal life are suffering, for instance illness, mental health problems or family circumstances, 
your student counsellor can listen to you. Conversations are confidential. Based on these talks 
the student counsellor can direct you to some further assistance. The student counsellor may also 
call up students for a talk if it appears that their results are falling back. More information and a 
scheduling tool can be found here.
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Internationalization
For any questions you may have about studying for a semester at a foreign university, or about a 
practical training abroad, for support, and for direct information you can contact during opening 
hours the international relations officer of the Department of Advanced Computing Sciences  
Luc Giezenaars via  dacs-international@maastrichtuniversity.nl.

4.9 Student Services Centre

The Student Services Centre is responsible for the preparation and execution of the policy of 
Maastricht University in the area of general student provisions. In short, this department has a 
number of specialized service units for student-related issues such as accommodation, sports, 
information on studies and work and career advice. In addition, there is a central information desk 
in the main entrance hall of the Visitors’ Centre, to which current and prospective students may 
address their questions. 
Visiting address: Bonnefantenstraat 2, Tel.: +31(0)43-388 53 88, 
www.maastrichtuniversity.nl/ssc.

4.9.1 Visitors’ Centre and student registration

Information Desk
The information desk in the UM Visitors’ Centre at Bonnefantenstraat 2 is the first point of contact 
for current and new students. It provides the following services:
•	 Help with admission and (re)registration;
•	 Information on and help with visas, scholarships, bank accounts and (health) insurance;
•	 Changing of address;
•	 Payment of tuition fees;
•	 Cancellation of registration;
•	 Reimbursement of tuition fees;
•	 Proof of payment/registration;
•	 Collection of your first UM-card;
•	 Help with housing; 
•	 Appointments with student deans, psychologists, and career services;
•	 UM gifts. 

Tel.: +31(0)43-388 53 88, 
e-mail address: study@maastrichtuniversity.nl
FAQ: https://www.maastrichtuniversity.nl/frequently-asked-questions-faqs 
Opening hours Monday-Friday 08h30 - 18h00.

Visa and Scholarship Office
The Visa and Scholarship Office is responsible for immigration matters and scholarships for 
prospective and current students.  
For any questions on visas, please visit our website: www.maastrichtuniversity.nl/visa  
or e-mail address: visa@maastrichtuniversity.nl.

UM Career Services
UM Career Services offers workshops, job interview simulations, Quick career advise and more 
intensive counseling. For more information, please see www.maastrichtuniversity.nl/careerservices 
or contact your student counsellors Wendy, Tessa and Eva at the Department of Advanced 
Computing Sciences 
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Student Guidance
Psychological support (Student psychologists)
Student Psychologists may be consulted in case of personal problems. Examples of complaints and 
problems include:
•	 Study related problems like study stress and fear of failure;
•	 Psychological complaints such as anxiety, depression, eating disorders, stress-related complaints, 

lack of confidence, dealing with traumatic experiences.

The student psychologists can help you by means of individual guidance and/or group training (in 
Dutch and English). Check the current offer via: https://www.maastrichtuniversity.nl/support/your-
career/lectures-workshops-and-training-courses

For making an appointment use the online tool on the website.

Study related legal support (Student Deans).
For more information: www.maastrichtuniversity.nl/studentguidance 
E-mail address: studentendecanen@maastrichtuniversity.nl 
Open visiting hours at the SSC, please check the website for correct timeslots 

Studying with a disability, chronic illness or dyslexia
It is important to Maastricht University that students with a functional impairment can successfully 
complete their studies without too much delay. By functional impairment UM means all disorders 
that are of a permanent or temporary character. Amongst these are all motor, sensory or 
psychological disorders, but also non-visible disorders, such as dyslexia, chronic illness, physical 
complaints, depression and the like. Disability Support is available to students (with a functional 
impairment), prospective students, student counsellors, teachers, parents and others who are 
interested.
 
For more info: https://www.maastrichtuniversity.nl/studyingwithdisability
E-mail address: disability@maastrichtuniversity.nl
Open visiting hours: Monday - Thursday from 11h00 to 13h00.
Tel.: +31(0)43-388 52 72. 
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5	 Staff

Dr. Walter Crist 
III

Dr. Remzi CelebiDr. Rachel Cavill Dr. Pieter 
Collins

Dr. Steven 
Chaplick

Lucas Dahl Dr. Otti D’Huys Dr. Phippe  
Dreesen

Dr. Kurt 
Driessens

Dr. Menica 
Dibenedetto

5.1		 Academic Staff

Dr. Francesco 
Barile

Dr. Olivier 
Bilenne

Dr. Pietro 
Bonizzi

Kamil  
Bujnarowski 

Dr. Martijn 
Boussé

Dr. Rishav HadaDr. Tony  
Garnock-Jones 

Dr. Barbara 
Franci

Dr. Enrique 
Hortal Quesada

Prof. dr. Michel 
Dumontier
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Dr. Matus 
Mihalak

Dr. Stefan 
Maubach

Dr. Joël Karel Dr. Steven Kelk

Prof. Dr. Ir. Ralf 
Peeters

Dr. Charis  
Kouzinopoulos 

Dr. Mirella Popa

Dr. Rico Möckel Dr. Marieke 
Musegaas

Dr. Eric Piette

Dr. Katharina 
Schneider

Dr. Ir. Nico RoosDr. Linda 
Rieswijk

Dr. Tjitze  
Rienstra

Dr. Gijs 
Schoenmakers

Dr. Yusuf Can 
Semerci

Prof. Dr. Jan 
Scholtes

Dr. Christof 
Seiler

Dr. Evgueni 
Smirnov

Spriha Joshi
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Dr.ir. Marijn  
ten Thij

Prof. Dr. Mark 
Winands

Prof. Dr. Nava
Tintarev

Prof. Dr. Frank 
Thuijsman

Prof. Dr. Anna 
Wilbik

Prof. Dr.  
Gerhard Weiss

Dr. Georgios 
Stamoulis

Dr. Chang Sun

Dean Boonen

5.2 Lab assistants

Dr. Anirudh 
Wodeyar

Dr. Jerry 
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